Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance.

Nanotechnology

Nanomaterials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China. Department of Chemistry, Anhui Normal University, Wuhu 241000, People's Republic of China.

Published: September 2016

Porous and single-crystalline ZnO nanobelts have been prepared through annealing precursors of ZnSe · 0.5N2H4 well-defined and smooth nanobelts, which have been synthesized via a simple hydrothermal method. The composition and morphology evolutions with the calcination temperatures have been investigated in detail for as-prepared precursor nanobelts, suggesting that they can be easily transformed into ZnO nanobelts by preserving their initial morphology via calcination in air. In contrast, the obtained ZnO nanobelts are densely porous, owing to the thermal decomposition and oxidization of the precursor nanobelts. More importantly, the achieved porous ZnO nanobelts are single-crystalline, different from previously reported ones. Motivated by the intrinsic properties of the porous structure and good electronic transporting ability of single crystals, their gas-sensing performance has been further explored. It is demonstrated that porous ZnO single-crystalline nanobelts exhibit high response and repeatability toward volatile organic compounds, such as ethanol and acetone, with a short response/recovery time. Furthermore, their optoelectronic behaviors indicate that they can be promisingly employed to fabricate photoelectrochemical sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/27/35/355702DOI Listing

Publication Analysis

Top Keywords

zno nanobelts
20
precursor nanobelts
12
nanobelts
10
porous single-crystalline
8
single-crystalline zno
8
porous zno
8
porous
6
zno
6
nanobelts fabrication
4
fabrication annealing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!