We examined the effect of diethyl pyrocarbonate (DEPC), a histidine-specific reagent, on the H+/organic cation antiport system in brush-border membrane vesicles isolated from the rat renal cortex. Pretreatment of membrane vesicles with DEPC resulted in the inhibition of tetraethylammonium transport. This inhibition was reversed by subsequent treatment with hydroxylamine, but not with dithiotreitol. In contrast, the uptake of p-aminohippurate, a typical organic anion, was not inhibited by DEPC pretreatment. In the absence of an H+ gradient, pretreatment with DEPC inhibited the uptake of tetraethylammonium at pH 6.0-7.0, but not at pH 7.5. The Vmax value of tetraethylammonium uptake at pH 7.0 was decreased without any change in the Km value, but the kinetic parameters at pH 7.5 were unchanged. Unlabeled tetraethylamonium did not protect against the inhibition by DEPC. These results suggest that histidine residues in the organic cation carrier are essential for transport at acidic and neutral pH values, but not at alkaline pH values, and that histidine residues play an important role as regulatory sites in the H+/organic cation antiport system rather than as binding sites for organic cations.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!