High-Throughput Microfluidic Device for Circulating Tumor Cell Isolation from Whole Blood.

Micro Total Anal Syst

Dept. of Mechanical Engineering, University of California, Berkeley, CA 94720 USA.

Published: October 2015

Circulating tumor cells (CTCs) are promising markers to determine cancer patient prognosis and track disease response to therapy. We present a multi-stage microfluidic device we have developed that utilizes inertial and Dean drag forces for isolating CTCs from whole blood. We demonstrate a 94.2% ± 2.1% recovery of cancer cells with our device when screening whole blood spiked with MCF-7 GFP cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956345PMC

Publication Analysis

Top Keywords

microfluidic device
8
circulating tumor
8
high-throughput microfluidic
4
device circulating
4
tumor cell
4
cell isolation
4
isolation blood
4
blood circulating
4
tumor cells
4
cells ctcs
4

Similar Publications

An integrated immunofluorescent detection system for automated and sensitive protein quantification based on a microfluidic flow cytometry platform.

Anal Chim Acta

March 2025

Holosensor Medical Technology Ltd, Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou, 215000, China; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK. Electronic address:

Rapid and sensitive protein detection methods are of benefit to clinical diagnosis, pathological mechanism research, and infection prevention. However, routine protein detection technologies, such as enzyme-linked immunosorbent assay and Western blot, suffer from low sensitivity, poor quantification and labourious operation. Herein, we developed a fully automated protein analysis system to conduct fast protein quantification at the single molecular level.

View Article and Find Full Text PDF

Male factor accounts for 30-50% of infertility cases and may occur due to congenital anomalies or acquired disorders. In such infertility cases where a limited number of mature sperm is produced, a solution is offered to patients with ART applications; however, these methods are inadequate in patients with germ cell aplasia due to damaged microenvironment. Since monolayer cell culture and static culture conditions do not provide the physical conditions of the 3D microenvironment, they have a limited effect on ensuring the execution of in vitro spermatogenesis properly.

View Article and Find Full Text PDF

Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles.

Langmuir

January 2025

School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).

View Article and Find Full Text PDF

Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls.

View Article and Find Full Text PDF

We report on the design and fabrication of a novel circular pillar array as an interfacial barrier for microfluidic microphysiological systems (MPS). Traditional barrier interfaces, such as porous membranes and microchannel arrays, present limitations due to inconsistent pore size, complex fabrication and device assembly, and lack of tunability using a scalable design. Our pillar array overcomes these limitations by providing precise control over pore size, porosity, and hydraulic resistance through simple modifications of pillar dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!