The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955802PMC
http://dx.doi.org/10.1109/TASC.2016.2532798DOI Listing

Publication Analysis

Top Keywords

josephson arbitrary
8
arbitrary waveform
8
waveform synthesizer
8
wilkinson dividers
8
output voltage
8
pulse generator
8
generator channels
8
voltage
5
two-volt josephson
4
synthesizer wilkinson
4

Similar Publications

Electromagnetic waves propagating in a layered superconductor with arbitrary momentum, with respect to the main crystallographic directions, exhibit an unavoidable mixing between longitudinal and transverse degrees of freedom. Here we show that this basic physical mechanism explains the emergence of a well-defined absorption peak in the in-plane optical conductivity when light propagates at small tilting angles relative to the stacking direction in layered cuprates. More specifically, we show that this peak, often interpreted as a spurious leakage of the -axis Josephson plasmon, is instead a signature of the true longitudinal plasma mode occurring at larger momenta.

View Article and Find Full Text PDF

Hidden Symmetry in Interacting-Quantum-Dot-Based Multiterminal Josephson Junctions.

Phys Rev Lett

March 2024

Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Praha 2, Czech Republic.

We study a multiterminal Josephson junction based on an interacting quantum dot coupled to n superconducting BCS leads. Using an Anderson type model of a local level with an arbitrary on-site Coulomb repulsion, we uncover its surprising equivalence with an effective two-terminal junction with symmetric couplings to appropriately phase-biased leads. Regardless of the strength of the Coulomb interaction, this hidden symmetry enables us to apply well-established numerical and theoretical tools for exact evaluation of various physical quantities, and imposes strict relations among them.

View Article and Find Full Text PDF

Sn/InAs Josephson Junctions on Selective Area Grown Nanowires with in Situ Shadowed Superconductor Evaporation.

Nano Lett

August 2023

Electrical and Computer Engineering Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Superconductor-semiconductor nanowire hybrid structures are useful in fabricating devices for quantum information processing. While selective area growth (SAG) offers the flexibility to grow semiconductor nanowires in arbitrary geometries, in situ evaporation of superconductors ensures pristine superconductor-semiconductor interfaces, resulting in strong induced superconductivity in the semiconducting nanowire. In this work, we used high-aspect-ratio SiO dielectric walls to in situ evaporate islands of superconductor tin on in-plane InAs SAG nanowires.

View Article and Find Full Text PDF

In this paper, we present a theoretical study of electronic transport in planar Josephson Superconductor-Normal Metal-Superconductor (SN-N-NS) bridges with arbitrary transparency of the SN interfaces. We formulate and solve the two-dimensional problem of finding the spatial distribution of the supercurrent in the SN electrodes. This allows us to determine the scale of the weak coupling region in the SN-N-NS bridges, i.

View Article and Find Full Text PDF

We demonstrate Josephson arbitrary waveform synthesizers (JAWS) with increased operating temperature range for temperatures below 4 K. These JAWS synthesizers were fabricated with externally-shunted Nb/-Si/Nb junctions whose critical current exhibits improved temperature stability compared to the self-shunted Nb/NbSi/Nb junctions typically used. Vertical stud resistors made of 230 nm of PdAu were developed to provide the milliohm shunt resistance required for junction overdamping while maintaining a small footprint suitable for high-density series arrays embedded in a coplanar waveguide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!