Six ferrocenecarboxylates with phenyl, 4-(1-pyrrol-1-yl)phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl as pendant groups were synthesized and fully characterized by spectroscopic, electrochemical and X-ray diffraction methods. The anti-proliferative activity of these complexes were investigated in hormone dependent MCF-7 breast cancer and MCF-10A normal breast cell lines, to determine the role of the para substituent on the phenoxy pendant group. The 4-fluorophenyl ferrocenecarboxylate is inactive in both cell lines while 4-(1-pyrrol-1-yl)phenyl ferrocenecarboxylate is highly cytotoxic in both cell lines. 4-chlorophenyl and 4-bromophenyl ferrocenecarboxylates have moderate to good anti-proliferative activity in MCF-7 and low anti-proliferative activity on normal breast cell line, MCF-10A whereas the 4-iodophenyl analog is highly toxic on normal breast cell line. The phenyl ferrocenecarboxylate has proliferative effects on MCF-7 and is inactive in MCF-10A. Docking studies between the complexes and the alpha-estrogen receptor (ER) were performed to search for key interactions which may explain the anti-proliferative activity of 4-bromophenyl ferrocenecarboxylate. Docking studies suggest the anti-proliferative activity of these ferrocenecarboxylates is attributed to the cytotoxic effects of the ferrocene group and not to anti-estrogenic effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957819PMC
http://dx.doi.org/10.1016/j.jorganchem.2013.10.002DOI Listing

Publication Analysis

Top Keywords

anti-proliferative activity
20
normal breast
12
breast cell
12
cell lines
12
role para
8
para substituent
8
substituent phenoxy
8
phenoxy pendant
8
pendant group
8
4-chlorophenyl 4-bromophenyl
8

Similar Publications

: Breast cancer influences more than 2 million women worldwide annually. Since apoptotic dysregulation is a cancer hallmark, targeting apoptotic regulators encompasses strategic drug development for cancer therapy. One such class of apoptotic regulators is inhibitors of apoptosis proteins (IAP) which are a class of E3 ubiquitin ligases that actively function to support cancer growth and survival.

View Article and Find Full Text PDF

Indolo[2,3-]pyrrolo[3,4-]carbazole scaffold is successfully used as an efficient structural motif for the design and development of different antitumor agents. In this study, we investigated the anti-glioblastoma therapeutic potential of glycosylated indolocarbazole analog LCS1269 utilizing in vitro, in vivo, and in silico approaches. Cell viability was estimated by an MTT assay.

View Article and Find Full Text PDF

Molecular Mechanisms and Signaling Pathways Underlying the Therapeutic Potential of Thymoquinone Against Colorectal Cancer.

Molecules

December 2024

Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.

Thymoquinone (TQ), a bioactive compound derived from , has garnered significant attention for its potential as a natural anti-cancer agent, particularly in the context of colorectal cancer. This review provides a detailed synthesis of the current literature on the anti-cancer properties of TQ in colorectal cancer cells, exploring both in vitro and in vivo studies to elucidate its mechanisms of action. TQ effectively induces apoptosis, inhibits cell proliferation, and reduces metastasis in colorectal cancer cells by modulating key molecular pathways such as PI3K/AKT/mTOR, NF-κB, STAT3, and MAPK.

View Article and Find Full Text PDF

is a subendemic species of the Central Apennine, valued locally for its applications in ancient and traditional medicine for its antibacterial, antifungal, anthelmintic, digestive, and antispasmodic effects. Several of these properties are also found in other species within the same genus, including recent findings highlighting their anti-tumor actions. However, the presence of cytotoxic or anti-tumor activity has never been studied in .

View Article and Find Full Text PDF

Immunomodulatory lectin from Cordia myxa targets PI3K/AKT signalling mediated apoptosis to regress both in-vitro and in-vivo tumour.

Int J Biol Macromol

January 2025

Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India. Electronic address:

Plant based medicine is gaining recognition as a complementary approach to conventional treatments. Plants contain lectins that bind to carbohydrates and exhibit various biological properties and being used in cancer treatment. In present investigation Cordia myxa fruit was chosen, screen for presence of lectin and explore its biological role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!