AI Article Synopsis

Article Abstract

Glaucoma is the second leading cause of blindness in the USA. A visual field test (perimetry) is used to sample and quantitate visual field function in preselected regions in the eye. These regions can be considered a spatial field with replications across independently measured individuals. At return visits, a new set of visual field measurements is obtained producing a subject specific spatio-temporal dataset. We develop a Bayesian hierarchical modeling framework to analyze these spatio-temporal datasets both for individual level spread and as aggregate population level trends. Our model extends previous research utilizing a dimension reduction matrix and individual specific latent variables. Human characteristics are incorporated into the model to help explain glaucoma progression. One beneficial product of our model is smoothed estimates for individuals. We also specify how progression rates are computed for monitoring purposes so that clinicians can track changes and predict forward in time. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.7056DOI Listing

Publication Analysis

Top Keywords

visual field
12
integrating independent
4
independent spatio-temporal
4
spatio-temporal replications
4
replications assess
4
assess population
4
population trends
4
trends disease
4
disease spread
4
spread glaucoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!