miR-338-3p suppresses epithelial-mesenchymal transition and metastasis in human nonsmall cell lung cancer.

Indian J Cancer

Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, People's Hospital of Lishui City, Zhejiang, China.

Published: December 2015

Objectives: MicroRNAs are important modulators of the cellular epithelial-mesenchymal transition (EMT) process and are associated with metastasis in human nonsmall cell lung cancer (NSCLC). In this study, we tried to investigate the role of miR-338-3p in NSCLC cells.

Materials And Methods: Real-time polymerase chain reaction was applied to quantify the expression levels of miR-338-3p, as well as EMT-associated molecules in NSCLC cells. Wound healing and transwell assays were performed to evaluate the migration and invasion capacities, respectively. Dual-luciferase reporter assay was finally performed to determine the targeting of zinc finger E-box-binding protein 2 (ZEB2) by miR-338-3p.

Results: We found that miR-338-3p was significantly reduced in NSCLC cell lines. Forced expression of miR-338-3p in A549 cells led to the suppression of migration/invasion capacity and inhibition of epithelial markers. In addition, we proved that miR-338-3p could directly target ZEB2.

Conclusions: In general, we summarized that miR-338-3p could inhibit EMT and metastasis of human NSCLC cells, which probably via directly targeting ZEB2 expression.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0019-509X.186569DOI Listing

Publication Analysis

Top Keywords

metastasis human
12
epithelial-mesenchymal transition
8
human nonsmall
8
nonsmall cell
8
cell lung
8
lung cancer
8
nsclc cells
8
mir-338-3p
7
nsclc
5
mir-338-3p suppresses
4

Similar Publications

Objective: Programmed Death-Ligand 1 (PD-L1) and Cytotoxic T Lymphocyte -Associated Antigen-4 (CTLA-4) are presently considered as prognostic markers and therapeutic targets in numerous human malignancies. The goal of this study was to determine whether PD-L1 and CTLA-4 might be used to predict patients' survival in Triple Negative Breast Cancer (TNBC).

Methods: This retrospective cohort study analyzed 100 primary TNBC cases that had surgical resection at the Oncology Center of Mansoura University (OCMU), Faculty of Medicine, Egypt.

View Article and Find Full Text PDF

Purpose: We hypothesised that applying radiomics to [F]PSMA-1007 PET/CT images could help distinguish Unspecific Bone Uptakes (UBUs) from bone metastases in prostate cancer (PCa) patients. We compared the performance of radiomic features to human visual interpretation.

Materials And Methods: We retrospectively analysed 102 hormone-sensitive PCa patients who underwent [F]PSMA-1007 PET/CT and exhibited at least one focal bone uptake with known clinical follow-up (reference standard).

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous metastatic lymphoma that can be treated by targeting angiogenesis. Apolipoprotein C1 (APOC1) plays a significant role in the proliferation and metastasis of various malignant tumors; however, its role in DLBCL-particularly its effects on angiogenesis-remains largely unexplored. This study investigates the correlation between APOC1 expression and patient prognosis in DLBCL.

View Article and Find Full Text PDF

Background: Despite surgical and intravesical chemotherapy interventions, non-muscle invasive bladder cancer (NMIBC) poses a high risk of recurrence, which significantly impacts patient survival. Traditional clinical characteristics alone are inadequate for accurately assessing the risk of NMIBC recurrence, necessitating the development of novel predictive tools.

Methods: We analyzed microarray data of NMIBC samples obtained from the ArrayExpress and GEO databases.

View Article and Find Full Text PDF

An Optimized Protocol for Simultaneous Propagation of Patient-derived Organoids and Matching CAFs.

Bio Protoc

January 2025

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Recurrent hormone receptor-positive (HR+) breast cancer is a leading cause of cancer mortality in women. Recurrence and resistance to targeted therapies have been difficult to study due to the long clinical course of the disease, the complex nature of resistance, and the lack of clinically relevant model systems. Existing models are limited to a few HR+ cell lines, organoid models, and patient-derived xenograft models, all lacking components of the human tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!