In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems.

Sci Total Environ

Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada. Electronic address:

Published: November 2016

Hydrogen peroxide (H2O2) and persulfate are the most efficient and commonly used oxidants in in-situ chemical oxidation (ISCO) of organic contaminants. This review focuses on the principle and activation techniques used in H2O2 and persulfate based ISCO processes. It is crucial to understand the effect of activation techniques on process chemistry and free radicals behaviour in order to achieve high degradation efficiency. The chemistry of interaction of activated H2O2 and persulfate with organic contaminants is complex and many parameters influence the performance of ISCO processes, namely non-productive reactants, reaction intermediates, oxygen and pH. The poor understanding of interaction behaviour and reaction chemistry of oxidants with organic contaminants prevents the utilization of full potential of the process. Therefore, particular attention has been given to the factors affecting degradation efficiency and the performance of ISCO processes. Further, the mechanism of contaminant degradation using activated H2O2 and persulfate significantly differ from each other. The interaction of SO4(-) radical usually involves electron transfer reactions whereas HO radical involve electron-transfer and hydrogen-atom abstraction reactions. Moreover, the research gaps have been identified based on the knowledge of current research and recommendations are made for further understanding of ISCO processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.07.032DOI Listing

Publication Analysis

Top Keywords

h2o2 persulfate
16
isco processes
16
organic contaminants
12
in-situ chemical
8
chemical oxidation
8
activation techniques
8
degradation efficiency
8
activated h2o2
8
performance isco
8
persulfate
5

Similar Publications

This study evaluates the combined use of H₂O₂ and thermally activated S₂O₈⁻ (T-PDS) for the degradation of phenolic compounds (PhOH) in wastewater, aiming to limit or eliminate sludge production. Phenolic compounds are common in industrial effluents, and their effective removal is crucial for reducing environmental impact. The study employs Response Surface Methodology (RSM) and Principal Component Analysis (PCA) to optimise critical variables such as temperature, pH, and oxidant concentrations.

View Article and Find Full Text PDF

Assessing the effectiveness and mechanisms of Fe/PS, Fe/HO, and O treatment for water disinfection: Spotlight on VBNC bacteria.

J Environ Sci (China)

June 2025

School of Environmental Science and Engineering, Laboratory of Marine Ecological Environment in Universities of Shandong, Shandong University, Qingdao 266237, China; Qingdao Key Laboratory of Marine Pollutant Prevention, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China. Electronic address:

Advanced oxidation processes (AOPs) exhibit significant potential for water disinfection due to their generation of large quantities of highly oxidizing free radicals. However, the neglect of viable but nonculturable (VBNC) cells obscures their true disinfection efficacy and potential environmental health risks. Therefore, the study evaluated the disinfection effectiveness and mechanisms of typical AOPs, including Fe/HO, Fe/persulfate (PS), and O, from the perspective of the production of VBNC bacteria.

View Article and Find Full Text PDF

Assessing excimer far-UVC (222 nm) irradiation for advanced oxidation processes: Oxidants photochemistry and micropollutants degradation.

Water Res

December 2024

Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China. Electronic address:

Article Synopsis
  • The KrCl* excimer lamp (UV222) is a mercury-free alternative to low-pressure mercury lamps (UV254) for UV-based advanced oxidation processes, offering higher photon energy and better performance.
  • A comprehensive study was conducted on various oxidants like hydrogen peroxide and persulfate, revealing that UV222 significantly enhances oxidant activation, with increased efficacy for degrading micropollutants compared to UV254.
  • PDS proved to be the most effective oxidant under UV222, achieving much higher rates of micropollutant elimination and requiring less energy, despite some interference from other water constituents.
View Article and Find Full Text PDF

Effect of different initiators on the properties of diacetone acrylamide grafted starch-based adhesive.

Int J Biol Macromol

September 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.

Environmentally friendly and non-toxic bio-based adhesives are emerging as the most promising substitutes for petroleum-based adhesives, attracting increasing attention. This work involved the synthesis of a starch-based adhesive for particleboards by grafting diacetone acrylamide (DAAM) onto starch. The graft polymerization was initiated using three different initiators: ammonium persulfate (APS), hydrogen peroxide (HO)/ammonium ferrous sulfate system, and ceric ammonium nitrate (CAN).

View Article and Find Full Text PDF

Co-catalysis strategy for low-oxidant-consumption Fenton-like chemistry: From theoretical understandings to practical applications and future guiding strategies.

Water Res

December 2024

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China. Electronic address:

Recently, great effects have been made for the co-catalysis strategy to solve the bottlenecks of Fenton system. A series of co-catalysis strategies using various inorganic metal co-catalysts and organic co-catalysts have been developed in various oxidant (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!