Characterization of ion channels on subesophageal ganglion neurons from Chinese tarantula Ornithoctonus huwena: Exploring the myth of the spider insensitive to its venom.

Toxicon

Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China. Electronic address:

Published: September 2016

Chinese tarantula Ornithoctonus huwena is one of the most venomous spiders distributing in the hilly areas of southern China. In this study, using whole-cell patch-clamp technique we investigated electrophysiological and pharmacological properties of ion channels from tarantula subesophageal ganglion neurons. It was found that the neurons express multiple kinds of ion channels at least including voltage-gated calcium channels, TTX-sensitive sodium channels and two types of potassium channels. They exhibit pharmacological properties similar to mammalian subtypes. Spider calcium channels were sensitive to ω-conotoxin GVIA and diltiazem, two well-known inhibitors of mammalian neuronal high-voltage-activated (HVA) subtypes. 4-Aminopyridine and tetraethylammonium could inhibit spider outward transient and delayed-rectifier potassium channels, respectively. Huwentoxin-I and huwentoxin-IV are two abundant toxic components in the venom of Ornithoctonus huwena. Interestingly, although in our previous work they inhibit HVA calcium channels and TTX-sensitive sodium channels from mammalian sensory neurons, respectively, they fail to affect the subtypes from spider neurons. Moreover, the crude venom has no effect on delayed-rectifier potassium channels and only slightly reduces transient outward potassium channels with an IC50 value of ∼51.3 mg/L. Therefore, our findings provide important evidence for ion channels from spiders having an evolution as self-defense and prey mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2016.07.011DOI Listing

Publication Analysis

Top Keywords

ion channels
16
potassium channels
16
channels
13
ornithoctonus huwena
12
calcium channels
12
subesophageal ganglion
8
ganglion neurons
8
chinese tarantula
8
tarantula ornithoctonus
8
pharmacological properties
8

Similar Publications

Ferroptosis is a form of iron-dependent programmed cell death, which is distinct from apoptosis, necrosis, and autophagy. Mitochondria play a critical role in initiating and amplifying ferroptosis in cancer cells. Voltage-Dependent Anion Channel 1 (VDAC1) embedded in the mitochondrial outer membrane, exerts roles in regulation of ferroptosis.

View Article and Find Full Text PDF

MuSK regulates neuromuscular junction Nav1.4 localization and excitability.

J Neurosci

January 2025

Carney Institute for Brain Science, Brown University, Providence, RI 02912

The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.

View Article and Find Full Text PDF

Action potentials (spikes) are regenerated at each node of Ranvier during saltatory transmission along a myelinated axon. The high density of voltage-gated sodium channels required by nodes to reliably transmit spikes increases the risk of ectopic spike generation in the axon. Here we show that ectopic spiking is avoided because K1 channels prevent nodes from responding to slow depolarization; instead, axons respond selectively to rapid depolarization because K1 channels implement a high-pass filter.

View Article and Find Full Text PDF

The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.

View Article and Find Full Text PDF

The Shab family potassium channels are highly enriched at the presynaptic terminals of human neurons.

J Biol Chem

January 2025

Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO 80523, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. Electronic address:

The Shab family voltage-gated K channels (i.e., Kv2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!