A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

β-Arrestin-Dependent Dopaminergic Regulation of Calcium Channel Activity in the Axon Initial Segment. | LitMetric

β-Arrestin-Dependent Dopaminergic Regulation of Calcium Channel Activity in the Axon Initial Segment.

Cell Rep

Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

Published: August 2016

G-protein-coupled receptors (GPCRs) initiate a variety of signaling cascades, depending on effector coupling. β-arrestins, which were initially characterized by their ability to "arrest" GPCR signaling by uncoupling receptor and G protein, have recently emerged as important signaling effectors for GPCRs. β-arrestins engage signaling pathways that are distinct from those mediated by G protein. As such, arrestin-dependent signaling can play a unique role in regulating cell function, but whether neuromodulatory GPCRs utilize β-arrestin-dependent signaling to regulate neuronal excitability remains unclear. Here, we find that D3 dopamine receptors (D3R) regulate axon initial segment (AIS) excitability through β-arrestin-dependent signaling, modifying CaV3 voltage dependence to suppress high-frequency action potential generation. This non-canonical D3R signaling thereby gates AIS excitability via pathways distinct from classical GPCR signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074334PMC
http://dx.doi.org/10.1016/j.celrep.2016.06.098DOI Listing

Publication Analysis

Top Keywords

signaling
9
axon initial
8
initial segment
8
gpcr signaling
8
signaling pathways
8
pathways distinct
8
β-arrestin-dependent signaling
8
ais excitability
8
β-arrestin-dependent dopaminergic
4
dopaminergic regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!