Proteoform-Specific Insights into Cellular Proteome Regulation.

Mol Cell Proteomics

From the ‡Protein Discovery Centre and ‖School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia

Published: October 2016

Knowledge regarding compositions of proteomes at the proteoform level enhances insights into cellular phenotypes. A strategy is described herein for discovery of proteoform-specific information about cellular proteomes. This strategy involved analysis of data obtained by bottom-up mass spectrometry of multiple protein OGE separations on a fraction by fraction basis. The strategy was exemplified using five matched sets of lysates of uninfected and human respiratory syncytial virus-infected A549 cells. Template matching demonstrated that 67.3% of 10475 protein profiles identified focused to narrow pI windows indicative of efficacious focusing. Furthermore, correlation between experimental and theoretical pI gradients indicated reproducible focusing. Based on these observations a proteoform profiling strategy was developed to identify proteoforms, detect proteoform diversity and discover potential proteoform regulation. One component of this strategy involved examination of the focusing profiles for protein groups. A novel concordance analysis facilitated differentiation between proteoforms, including proteoforms generated by alternate splicing and proteolysis. Evaluation of focusing profiles and concordance analysis were applicable to cells from a single and/or multiple biological states. Statistical analyses identified proteoform variation between biological states. Regulation relevant to cellular responses to human respiratory syncytial virus was revealed. Western blotting and Protomap analyses validated the proteoform regulation. Discovery of STAT1, WARS, MX1, and HSPB1 proteoform regulation by human respiratory syncytial virus highlighted the impact of the profiling strategy. Novel truncated proteoforms of MX1 were identified in infected cells and phosphorylation driven regulation of HSPB1 proteoforms was correlated with infection. The proteoform profiling strategy is generally applicable to investigating interactions between viruses and host cells and the analysis of other biological systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054351PMC
http://dx.doi.org/10.1074/mcp.O116.058438DOI Listing

Publication Analysis

Top Keywords

human respiratory
12
respiratory syncytial
12
profiling strategy
12
proteoform regulation
12
insights cellular
8
proteoform
8
strategy involved
8
proteoform profiling
8
focusing profiles
8
concordance analysis
8

Similar Publications

Clinical Diagnostic Value of miR-193a-5p in Neonatal Acute Respiratory Distress Syndrome and Analysis of Its Effect on Human Lung Epithelial Cells.

Fetal Pediatr Pathol

January 2025

Department of Respiratory and Critical Care Medicine, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.

: To explore the clinical value of miR-193a-5p in neonatal acute respiratory distress syndrome (ARDS) and its role in ARDS cell model . : RT-qPCR was utilized to detect miR-193a-5p level. Correlation analysis was implemented to assess the correlation between miR-193a-5p and clinical indicators (IL-6, IL-1β, TNF-α, LUS).

View Article and Find Full Text PDF

Aims: An explainable advanced electrocardiography (A-ECG) Heart Age gap is the difference between A-ECG Heart Age and chronological age. This gap is an estimate of accelerated cardiovascular aging expressed in years of healthy human aging, and can intuitively communicate cardiovascular risk to the general population. However, existing A-ECG Heart Age requires sinus rhythm.

View Article and Find Full Text PDF

Protective or limited? Maternal antibodies and RSV-associated lower respiratory tract infection in hospitalized infants aged 28-90 days.

Front Immunol

January 2025

Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.

Background: Respiratory syncytial virus (RSV) is a major cause of severe health problems in newborns and young children. The protective role and limitations of serum maternal RSV antibodies in infants under 3 months remain controversial.

Methods: A two-center prospective study from 2020 to 2023 recruited infants (n=286) admitted to the respiratory departments of two children's hospitals in southwestern and southeastern China during RSV epidemic.

View Article and Find Full Text PDF

hemocyanin as a novel natural immunostimulant in mammals.

Front Immunol

January 2025

Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.

Introduction: Gastropod hemocyanins are potent immunostimulants in mammals, a trait associated with their large molecular size and unusual glycosylation patterns. While the hemocyanin from the marine snail keyhole limpet (KLH), has been widely studied and successfully employed as a carrier/adjuvant in several immunological applications, as well as a non-specific immunostimulant for bladder cancer treatment, few other gastropod hemocyanins have been biochemically and immunologically characterized. In this work, we investigated the immunogenic properties of the hemocyanin from (PcH), an invasive south American freshwater snail.

View Article and Find Full Text PDF

Background: Diabetes and chronic obstructive pulmonary disease (COPD) are prominent global health challenges, each imposing significant burdens on affected individuals, healthcare systems, and society. However, the specific molecular mechanisms supporting their interrelationship have not been fully defined.

Methods: We identified the differentially expressed genes (DEGs) of COPD and diabetes from multi-center patient cohorts, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!