Aim: The aim of this work was to evaluate the efficacy of domestic cooking in inactivating Manila clams experimentally infected with human hepatitis A virus (HAV).

Methods And Results: Electronic temperature probes were positioned to measure the internal temperature of Manila clams during domestic cooking. Two batches were infected with 10(7) and 10(5) TCID50  ml(-1) of HAV. The infected whole-in-shell clams were divided into three replicates and cooked on a conventional stove both singularly and in group and removed from the pan at fixed intervals. Pools of three digestive glands were examined by virus isolation for three blind passages and cell culture supernatant tested with real-time PCR.

Conclusion: Results showed that 2-min cooking by a traditional domestic method at a temperature close to 100°C, after the opening up of the valves of all the clams, can completely devitalize the HAV in high viral load-infected clams.

Significance And Impact Of The Study: This is the first study on inactivation of HAV in experimentally infected Manila clams subjected to domestic cooking. At present, labelling all lagoon products as 'requiring cooking before consumption' is highly recommended, but no specifications are given on how long and at what temperature they should be cooked. Considering the high commercial value of Manila clams, our results can provide both the producers and the consumer with useful indications on how to cook clams to prevent the risk of HAV foodborne illness.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jam.13242DOI Listing

Publication Analysis

Top Keywords

manila clams
20
domestic cooking
16
experimentally infected
12
efficacy domestic
8
human hepatitis
8
hepatitis virus
8
infected manila
8
clams
8
cooking
6
infected
5

Similar Publications

White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (), blue mussels (), and manila clams () cohabiting with WSSV-infected shrimp. Sixty individuals of each species (average shell lengths: 11.

View Article and Find Full Text PDF

Toll-like receptor 4 (TLR4) is a pattern recognition receptor that activates innate immunity in response to pathogen infection. However, the role of TLR4 in pathogen-induced apoptosis and host immunity in mollusks remains largely unknown. In this study, the TLR4 of the Manila clam Ruditapes philippinarum (RpTLR4) was cloned.

View Article and Find Full Text PDF

Bioturbation effects and behavioral changes in buried bivalves after exposure to microplastics.

J Hazard Mater

December 2024

Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Microplastic pollution has become an increasing concern. Vertical transport of microplastics is one of the major research questions concerning the distribution and fate of microplastics in the marine environment, and biologically mediated vertical transport is particularly significant. However, studies on the effects of different types of benthic organisms on the vertical distribution of microplastics in sediments are still scarce.

View Article and Find Full Text PDF

Clam Genome and Transcriptomes Provide Insights into Molecular Basis of Morphological Novelties and Adaptations in Mollusks.

Biology (Basel)

October 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

Bivalve mollusks, comprising animals enclosed in two shell valves, are well-adapted to benthic life in many intertidal zones. Clams have evolved the buried lifestyle, which depends on their unique soft tissue structure and their wedge-shaped muscular foot and long extendible siphons. However, molecular mechanisms of adaptative phenotype evolution remain largely unknown.

View Article and Find Full Text PDF

Background: The deep-sea cold seep zone is characterized by high pressure, low temperature, darkness, and oligotrophy. Vesicomyidae clams are the dominant species within this environment, often forming symbiotic relationships with chemosynthetic microbes. Understanding the mechanisms by which Vesicomyidae clams adapt to the cold seep environment is significant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!