Introduction: This study aimed to investigate the roles of ephrinB2 in stabilizing vascularlike structures generated by stem cells from apical papilla (SCAPs) and human umbilical vein endothelial cells (HUVECs).
Methods: HUVECs were seeded alone or with SCAPs concurrently or 12 hours later. Angiogenesis and ephrinB2 phosphorylation were assayed at different time points. Additionally, ephrinB2 expression in SCAPs and HUVECs was silenced with small interfering RNA, and vascularlike structure formation within coculture was assessed; 1 × 10(5) HUVECs were seeded in transwell inserts, and 6 × 10(5) SCAPs were plated in lower wells with or without ephrinB2-Fc. Migratory cells were stained and counted. Delayed addition of ephrinB2-Fc to the coculture of HUVECs and SCAPs was performed to evaluate the role of ephrinB2 on the stabilization of vascularlike structures.
Results: Concurrent coculture of SCAPs and HUVECs yielded significantly longer tubule lengths at 4, 8, and 12 hours (P < .05). Delayed addition of SCAPs to coculture with HUVECs resulted in vascularlike structures persisting longer than the HUVEC monoculture. Western blot confirmed that ephrinB2 phosphorylation was initiated at 0.5 hours of coculture and peaked at 1 hour. Silencing ephrinB2 expression in SCAPs and HUVECs resulted in the absence of vascularlike structures. Enhanced migration of HUVECs by SCAPs could be inhibited by ephrinB2-Fc. When ephrinB2-Fc was added at 3 hours of coculture, the vascularlike structures were stabilized for more than 12 hours as compared with 9 hours in the control group.
Conclusions: EphrinB2 plays an important role in the stabilization of vascularlike structures generated by HUVECs and SCAPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.joen.2016.05.012 | DOI Listing |
Objectives: This study evaluates the performance of a clinical dual-source photon-counting computed tomography (PCCT) system in quantifying iodine within calcified vessels, using 3D- printed phantoms with vascular-like structures lined with calcium.
Methods: Parameters assessed include lumen diameters (4, 6, 8, 10, and 12 mm), phantom sizes (S: 20×20 cm, M: 25×25 cm, L: 30×40 cm, XL: 40×50 cm, representing the 99th percentile of US patient sizes), and iodine concentrations (2, 5, and 10 mg/mL). Scans were performed at radiation dose levels of 5, 10, 15, and 20 mGy to systematically evaluate iodine quantification accuracy and spectral imaging performance.
Biofabrication
January 2025
Materials Science & Engineering, Stanford University, McCullough 246, 496 Lomita Mall, Stanford, California, 94305-6104, UNITED STATES.
Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process.
View Article and Find Full Text PDFJ Biosci Bioeng
December 2024
Institute of Frontier Science and Technology, Okayama University of Science, Okayama 700-0005, Japan. Electronic address:
Vascular-like tissues composed of cells maintaining their shape and structure at any position in a culture dish without the use of gels or other artificial materials are ideal vascular models to test the effects of candidate drugs on cells without adsorption by artificial materials and analysis of structural changes over time. In this study, we aimed to prepare fiber-shaped cell aggregates composed of human umbilical vein endothelial and mesenchymal stem cells as vascular pericytes anchored to the bottom of culture dishes at a defined location using our developed cell self-aggregation technique and dumbbell-shaped culture groove. The fiber-shaped cell aggregates maintained their shape for at least two weeks without rupture, and histological analysis revealed that they formed a unique tissue structure with a gapless endothelial layer on the outer surface and capillary-like structures oriented in the same direction as the long axis of the fiber in the medial side.
View Article and Find Full Text PDFCancer Lett
December 2024
Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China. Electronic address:
Vasculogenic mimicry (VM), which involved the formation of vascular-like structures by highly invasive tumor cells, had been identified as one of the mechanisms contributing to resistance against anti-angiogenic therapy in patients with glioblastoma (GBM). Therefore, inhibition of VM formation may serve as an effective therapeutic strategy against angiogenesis resistance. Polo-like kinase 4 (PLK4), a protein kinase, had been linked to the progression of glioblastoma and was associated with an unfavorable prognosis.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
Glioblastoma (GBM) is the most aggressive type of brain tumor, characterized by poor outcome and limited therapeutic options. During tumor progression, GBM may undergo the process of vasculogenic mimicry (VM), consisting of the formation of vascular-like structures which further promote tumor aggressiveness and malignancy. The resulting resistance to anti-angiogenetic therapies urges the identification of new compounds targeting VM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!