Endothelin-1 (ET-1) is an extremely potent vasoconstrictor peptide originally isolated from endothelial cells. Its synthesis, mainly regulated at the gene transcription level, involves processing of a precursor by a furin-type proprotein convertase to an inactive intermediate, big ET-1. The latter peptide can then be cleaved directly by an endothelin-converting enzyme (ECE) into ET-1 or reach the active metabolite through a two-step process involving chymase hydrolyzing big ET-1 to ET-1 (1-31), itself needing conversion to ET-1 by neprilysin (NEP) to exert physiological activity. ET-1 signals through two G protein-coupled receptors, endothelin receptor A (ETA) and endothelin receptor B (ETB). Both receptors induce an increase in intracellular Ca(2+), mainly from the extracellular space through voltage-independent mechanisms, the receptor-operated channels and store-operated channels. ET-1 also induces signaling through epidermal growth factor receptor transactivation, oxidative stress induction, rho-kinase, and the activation (ETA) or inhibition (ETB) of the adenylate cyclase/cyclic adenosine monophosphate pathway. Arterial vasoconstriction is mediated mainly by the ETA receptor. ET-1, via endothelium-located ETB, relaxes arteries or constricts vessels following activation of the same receptor type on the smooth muscle, where it can interact with ETA. In addition, ETB-dependent vasoconstriction seems more prominent in the venous vasculature. A better understanding of how ET-1 is synthesized and how ETA and ETB receptors interact could help design better pharmacological agents in the treatment of cardiovascular diseases where targeting the ET-1 system is indicated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.apha.2016.05.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!