Bisphenol A (BPA) presents a serious threat to soil ecosystems, yet its effects on soil-inhabiting organisms are mostly unexplored. Therefore, the impact of environmentally relevant BPA concentrations on a terrestrial model organism, the earthworm Eisenia fetida, was assessed. Animals were cutaneously exposed to 100nM and 10μM BPA up to 10days (10-d). Next, a battery of biomarkers was used for ecotoxicological evaluation on a cellular, tissue and behavioural level. HPLC analysis showed that after a 10-d exposure, BPA accumulation reached a maximum of 2.50μg BPA per g of wet tissue weight. On the cellular level, up to 3-d BPA exposure caused increased lipid oxidation indicating oxidative stress. Histopathological assessment of cell wall and ovaries after 7- and 10-d BPA exposure showed multiple abnormalities, i.e. hyperplasia of epidermis, increased body wall thickness and ovarian atrophy. Detection of these changes was facilitated by a newly proposed semi-quantitative scoring system. Finally, behavioural changes were detected after only 3days of exposure to 100nM BPA. Altogether, the presented multilevel toxicity evaluation indicates high sensitivity of earthworms to low BPA doses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2016.07.017 | DOI Listing |
Adv Sci (Weinh)
January 2025
Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
Bisphenol A (BPA) is an "environmental obesogen" and this study aims to investigate the intergenerational impacts of BPA-induced metabolic syndrome (MetS), specifically focusing on unraveling mechanisms. Exposure to BPA induces metabolic disorders in the paternal mice, which are then transmitted to offspring, leading to late-onset MetS. Mechanistically, BPA upregulates Srebf1, which in turn promotes the Pparg-dependent transcription of Dicer1 in spermatocytes, increasing the levels of multiple sperm microRNAs (miRNAs).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.
View Article and Find Full Text PDFGastro Hep Adv
August 2024
Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida.
Background And Aims: Enzyme insufficiency (EPI) is common in chronic pancreatitis (CP), pancreatic ductal adenocarcinoma (PDAC), and after pancreatic resection. 40%-50% of CP patients and 70%-80% of PDAC patients develop EPI. 1/3rd of these patients are prescribed Pancreatic enzyme replacement therapy (PERT), often at an inadequate dose, with evidence that this leads to increased morbidity and mortality.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia. Electronic address:
Bisphenol A (BPA), an endocrine disruptor, is linked to cancer progression in estrogen-responsive tissues, but its role in promoting colorectal cancer (CRC) progression in the context of obesity remains underexplored. This study examines BPA's influence on CRC in obese Sprague-Dawley rats using network toxicology and experimental models. Computational analysis using the Database for Annotation, Visualization, and Integrated Discovery identified pathways such as "CRC" and "chemical carcinogenesis-receptor activation", implicating the PI3K-AKT pathway in IL-1 beta upregulation and BPA's role in CRC during obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!