γ-aminobutyric acid (GABA) receptors, responding to GABA positive allosteric modulators, are present in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the most primitive metazoans to develop a nervous system. We examined the occurrence and distribution of GABA receptor subunits in Hydra tissues by western blot and immunohistochemistry. Antibodies against different GABA receptor subunits were used in Hydra membrane preparations. Unique protein bands, inhibited by the specific peptide, appeared at 35, 60, ∼50 and ∼52 kDa in membranes incubated with α3, β1, γ3 or δ antibodies, respectively. Immunohistochemical screening of whole mount Hydra preparations revealed diffuse immunoreactivity to α3, β1 or γ3 antibodies in tentacles, hypostome, and upper part of the gastric region; immunoreactive fibers were also present in the lower peduncle. By contrast, δ antibodies revealed a strong labeling in the lower gastric region and peduncle, as well as in tentacles. Double labeling showed colocalization of α3/β1, α3/γ3 and α3/δ immunoreactivity in granules or cells in tentacles and gastric region. In the peduncle, colocalization of both α3/β1 and α3/γ3 immunoreactivity was found in fibers running horizontally above the foot. These data indicate that specific GABA receptor subunits are present and differentially distributed in Hydra body regions. Subunit colocalization suggests that Hydra GABA receptors are heterologous multimers, possibly sub-serving different physiological activities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-016-2010-1DOI Listing

Publication Analysis

Top Keywords

gaba receptor
16
receptor subunits
16
gastric region
12
freshwater polyp
8
polyp hydra
8
hydra vulgaris
8
vulgaris cnidaria
8
cnidaria hydrozoa
8
gaba receptors
8
subunits hydra
8

Similar Publications

Alpha6-containing GABA receptors - Novel targets for the treatment of schizophrenia.

Pharmacol Res

January 2025

Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria. Electronic address:

α6-containing GABA receptors (α6GABARs) are strongly expressed in cerebellar granule cells and are of central importance for cerebellar functions. The cerebellum not only is involved in regulation of motor activity, but also in regulation of thought, cognition, emotion, language, and social behavior. Activation of α6GABARs enhances the precision of sensory inputs, enables rapid and coordinated movement and adequate responses to the environment, and protects the brain from information overflow.

View Article and Find Full Text PDF

Dopaminergic modulation of propofol-induced activation in VLPO neurons: the role of D1 receptors in sleep-promoting neural circuits.

Front Neurosci

January 2025

The Key Laboratory of Anesthesia and Organ Protection, The Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.

Background: The ventrolateral preoptic nucleus (VLPO) is a crucial regulator of sleep, and its neurons are implicated in both sleep-wake regulation and anesthesia-induced loss of consciousness. Propofol (PRO), a widely used intravenous anesthetic, modulates the activity of VLPO neurons, but the underlying mechanisms, particularly the role of dopaminergic receptors, remain unclear.

Objective: This study aimed to investigate the effects of PRO on NA (-) neurons in the VLPO and to determine the involvement of D1 and D2 dopaminergic receptors in mediating these effects.

View Article and Find Full Text PDF

Type A GABA (γ-aminobutyric acid) receptors (GABA receptors) mediate most fast inhibitory signalling in the brain and are targets for drugs that treat epilepsy, anxiety, depression and insomnia and for anaesthetics. These receptors comprise a complex array of 19 related subunits, which form pentameric ligand-gated ion channels. The composition and structure of native GABA receptors in the human brain have been inferred from subunit localization in tissue, functional measurements and structural analysis from recombinant expression and in mice.

View Article and Find Full Text PDF

Action of GABAB receptor on local network oscillation in somatosensory cortex of oral part: focusing on NMDA receptor.

J Physiol Sci

January 2025

Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8504, Tokushima, Japan. Electronic address:

The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABA receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application.

View Article and Find Full Text PDF

Cerebrospinal fluid-contacting neurons (CSF-cNs) exhibit neural stem cell (NSC) properties both in vitro and in vivo, and they may play a critical role in recovery after spinal cord injury (SCI). GABA receptors (GABABRs) are expressed in Pkd2l1 CSF-cNs. However, their role in Pkd2l1 CSF-cNs still needs to be discovered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!