De novo transcriptome assembly of the marine gastropod Reishia clavigera for supporting toxic mechanism studies.

Aquat Toxicol

The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. Electronic address:

Published: September 2016

The intertidal whelk Reishia clavigera is commonly used as a biomonitor of chemical contamination in the marine environment along Western Pacific region, and as a model for mechanistic studies of organotin-mediated imposex development. However, limited genomic resources of R. clavigera have restricted its role for the investigation of molecular mechanisms of such endocrine disruptions. This study, therefore, aimed to establish tissue-specific transcriptomes of the digestive gland, gonad, head ganglia, penis and the remaining body part of the male and female R. clavigera. By combining the results, a global transcriptome was obtained. A total of 578,134,720 high-quality filtered reads were obtained using Illumina sequencing. The R. clavigera transcriptome comprised of 38,466 transcripts and 32,798 unigenes with predicted open reading frames. The average length of transcripts was 1,709bp with N50 of 2,236bp. Based on sequence similarity searches against public databases, 28,657 transcripts and 24,403 unigenes had at least one BLAST hit. There were 17,530 transcripts and 14,897 unigenes annotated with at least one Gene Ontology (GO) term. Moreover, 5,776 transcripts and 5,137 unigenes were associated with 333 Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways. The numbers of unigenes were similar among the five target tissues and between sexes, but tissue-specific expression profiles were revealed by multivariate analyses. Based on the functional annotation, putative steroid hormone-associated unigenes were identified. In particular, we highlighted the presence of steroid hormone receptor homologues that could be the targets for mechanistic studies of the organotin-mediated imposex development in marine gastropods. This newly generated transcriptome assembly of R. clavigera provides a valuable molecular resource for ecotoxicological and environmental genomic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2016.07.006DOI Listing

Publication Analysis

Top Keywords

transcriptome assembly
8
reishia clavigera
8
mechanistic studies
8
studies organotin-mediated
8
organotin-mediated imposex
8
imposex development
8
clavigera
6
unigenes
6
transcripts
5
novo transcriptome
4

Similar Publications

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Nudiviruses (family ) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce.

View Article and Find Full Text PDF

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.

J Genet Genomics

January 2025

National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.

View Article and Find Full Text PDF

Monkeypox (MPOX) is a zoonotic viral disease caused by the Monkeypox virus (MPXV), which has become the most significant public health threat within the genus since the eradication of the Variola virus (VARV). Despite the extensive attention MPXV has garnered, little is known about its clinical manifestations in humans. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was employed to investigate the transcriptional and metabolic responses of HEK293T cells to the MPXV A5L protein.

View Article and Find Full Text PDF

Background: Identification of global transcriptional events is crucial for genome annotation, as accurate annotation enhances the efficiency and comparability of genomic information across species. However, the annotation of transcripts in the cucumber genome remains to be improved, and many transcriptional events have not been well studied.

Results: We collected 1,904 high-quality public cucumber transcriptome samples from the National Center for Biotechnology Information (NCBI) to identify and annotate transcript isoforms in the cucumber genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!