Hypoxia, a distinguished feature of various solid tumors, has been considered as a key marker for tumor progression. Inadequate vasculature and high interstitial pressures result in relatively poor drug delivery to these tumors. Herein, we developed an antitumor theranostic agent, 4, which is activated in hypoxic conditions and can be used for the diagnosis and treatment of solid tumors. Compound 4, bearing biotin, a tumor-targeting unit, and SN38, an anticancer drug, proved to be an effective theranostic agent for solid tumors. SN38 plays a dual role: as an anticancer drug for therapy and as a fluorophore for diagnosis, thus avoids an extra fluorophore and limits cytotoxicity. Compound 4, activated in the hypoxic environment, showed high therapeutic activity in A549 and HeLa cells and spheroids. In vivo imaging of solid tumors confirmed the tumor-specific localization, deep tissue penetration and activation of compound 4, as well as the production of a strong anticancer effect through the inhibition of tumor growth in a xenograft mouse model validating it as a promising strategy for the treatment of solid tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2016.07.010 | DOI Listing |
Nat Med
January 2025
Department of Medicine-Medical Oncology, University of Colorado Cancer Center, Denver, CO, USA.
Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea.
Bcl-2, a key regulator of cellular apoptosis, is typically linked to adverse prognosis in solid tumors due to its inhibition of apoptotic cell death and promotion of cellular proliferation, leading to tumor progression. However, studies on Bcl-2 in breast cancer have shown inconsistent results, with some indicating favorable outcomes. This study aims to determine the subtype-specific role of Bcl-2 in breast cancer.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
January 2025
Department of Pathology, the Second Hospital of Hebei Medical University, Shijiazhuang050000, China.
To investigate the combined application of cytology, cell block histology and immunohistochemistry to improve the diagnostic accuracy of solid pancreatic lesions in endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) samples. The pathological data of EUS-FNA in 311 cases of solid pancreatic lesions submitted to the Second Hospital of Hebei Medical University, Shijiazhuang, China from May 2019 to September 2023 were retrospectively analyzed. The cases included pancreatic ductal adenocarcinoma (PDAC, 172 cases), solid pseudopapillary neoplasm (SPN, 12 cases), neuroendocrine tumors (PNET, 14 cases) and chronic pancreatitis (113 cases).
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
January 2025
Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, China.
To investigate the clinicopathological and molecular genetic characteristics of intracranial mesenchymal tumors with FET::CREB fusion transcript. The clinical and imaging data of 6 cases of intracranial mesenchymal tumors with FET::CREB fusion from December 2018 to December 2023 were collected at the First Affiliated Hospital of Zhengzhou University. Their histological features, immunophenotype and molecular characteristics were analyzed.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
January 2025
Ningbo Clinical Pathology Diagnosis Center, Ningbo315000, China.
To investigate the clinicopathological characteristics, immunophenotypes, diagnostic criteria and differential diagnosis of atrophic kidney-like lesion (AKLL). Three cases of AKLL were collected from April 2021 to October 2023 at the Xiangya Hospital of Central South University, Changsha, Zhejiang Provincial People's Hospital, Hangzhou and Ningbo Clinical Pathology Diagnosis Center, Ningbo, China. The clinical, morphological, and immunohistochemical characteristics were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!