This study describes the design, production, and testing of functionalized variants of a recombinant protein-based polymer that forms nanofibrillar hydrogels with self-healing properties. With a view to bone tissue engineering applications, we equipped these variants with N-terminal extensions containing either (1) integrin-binding (RGD) or (2) less commonly studied proteoglycan-binding (KRSR) cell-adhesive motifs. The polymers were efficiently produced as secreted proteins using the yeast Pichia pastoris and were essentially monodisperse. The pH-responsive protein-based polymers are soluble at low pH and self-assemble into supramolecular fibrils and hydrogels at physiological pH. By mixing functionalized and nonfunctionalized proteins in different ratios, and adjusting pH, hydrogel scaffolds with the same protein concentration but varying content of the two types of cell-adhesive motifs were readily obtained. The scaffolds were used for the two-dimensional culture of MG-63 osteoblastic cells. RGD domains had a slightly stronger effect than KRSR domains on adhesion, activity, and spreading. However, scaffolds featuring both functional domains revealed a clear synergistic effect on cell metabolic activity and spreading, and provided the highest final degree of cell confluency. The mixed functionalized hydrogels presented here thus allowed to tailor the osteoblastic cell response, offering prospects for their further development as scaffolds for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3082-3092, 2016.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129582 | PMC |
http://dx.doi.org/10.1002/jbm.a.35839 | DOI Listing |
Polymers (Basel)
December 2024
Department of Neurological Surgery, The University of Washington, Seattle, WA 98109, USA.
Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physics, M.V. Lomonosov Moscow State University, 1/2 Leninskie Gory, 119991 Moscow, Russia.
Biomimetic hydrogels have garnered increased interest due to their considerable potential for use in various fields, such as tissue engineering, 3D cell cultivation, and drug delivery. The primary challenge for applying hydrogels in tissue engineering is accurately evaluating their mechanical characteristics. In this context, we propose a method using scanning ion conductance microscopy (SICM) to determine the rigidity of living human breast cancer cells MCF-7 cells grown on a soft, self-assembled Fmoc-FF peptide hydrogel.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa.
Osteoporosis, a common metabolic bone disorder, leads to increased fracture risk and significant morbidity, particularly in postmenopausal women and the elderly. Traditional treatments often fail to fully restore bone health and may cause side effects, prompting the exploration of regenerative therapies. Adipose-derived stem cells (ADSCs) offer potential for osteoporosis treatment, but their natural inclination toward adipogenic rather than osteogenic differentiation poses a challenge.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
: The barrier properties of the human small intestine play a crucial role in regulating digestion, nutrient absorption and drug metabolism. Current in vitro organotypic models consist only of an epithelium, which does not take into account the possible role of stromal cells such as fibroblasts or the extracellular matrix (ECM) which could contribute to epithelial barrier properties. Therefore, the aim of this study was to determine whether these stromal cells or ECM were beneficial or detrimental to barrier function when incorporated into an organotypic human small intestine model.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China. Electronic address:
With the advancement of medical technology, the utilization of bioactive materials to promote bone repair has emerged as a significant research area. Hydrogels, as biomaterials, play a crucial role in bone tissue engineering. These hydrogels exhibit high biocompatibility, providing in vivo ecological conditions conducive to cell survival, and offer substantial advantages in facilitating bone repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!