Aim: To investigate the effect of extracellular matrix (ECM) proteins on characteristics of mesenchymal stem cells (MSCs) and tendon-derived cells (TDCs).

Materials And Methods: MSCs and TDCs, cultured in a monolayer (2D) or hydrogels (3D), with or without ECM protein supplementation, and on a non-viable native tendon (NNT) matrix were assayed for adhesion, proliferation, gene expression, and integrin expression.

Results: MSCs exhibited a fibroblastic, spindle-shaped morphology on 2D matrices except in the presence of fibronectin. In 3D matrices, MSCs displayed a rounded phenotype except when cultured on NNTs where cells aligned along the collagen fibrils but, unlike TDCs, did not form inter-cellular cytoplasmic processes. MSC proliferation was significantly (p < 0.01) increased by collagen type I in 2D culture and fibronectin in 3D culture. TDC proliferation was unaffected by substrata. MSCs and TDCs differentially expressed α2 integrin. Adhesion to substrata was reduced by RGD-blocking peptide and β1 integrin antibody. The presence of collagen I or fibronectin upregulated MSC expression of collagen type I and collagen type III, COMP, decorin, osteopontin, and fibronectin.

Conclusions: The morphology, gene expression, and adhesion of both MSCs and TDCs are sensitive to the presence of specific ECM components. Interaction with the ECM is, therefore, likely to affect the mechanism of action of MSCs in vitro and may contribute to phenotypic modulation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03008207.2016.1215442DOI Listing

Publication Analysis

Top Keywords

mscs tdcs
12
collagen type
12
mesenchymal stem
8
extracellular matrix
8
gene expression
8
mscs
7
collagen
5
modulation mesenchymal
4
stem cell
4
cell genotype
4

Similar Publications

Mesenchymal stem cell (MSC)-based therapy has been applied in several clinical trials of spinal cord injury (SCI). We have successfully established MSCs from human cranial bone and developed a longitudinal neuromonitoring technique for rodents. In addition to single transplantation, the potential of multiple transplantations has been suggested as a new therapeutic strategy.

View Article and Find Full Text PDF

Objective: Based on network meta-analysis (NMA) and network pharmacology approaches, we explored the clinical efficacy of different regimens, and clarified the pharmacological mechanisms of N-butylphthalide (NBP) in the treatment of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP).

Methods: Firstly, NMA was conducted to obtain the ranking of the efficacy of different regimens for the treatment of DEACMP. Secondly, the drug with a relatively high efficacy ranking was selected and its mechanism of treatment for DEACMP was identified through a network pharmacology analysis.

View Article and Find Full Text PDF

Multiple sclerosis (MS) has no absolute treatment, and researchers are still exploring to introduce promising therapy for MS. Transcranial direct current stimulation (tDCS), is a safe, non-invasive procedure for brain stimulating which can enhance working memory, cognitive neurohabitation and motor recovery. Here, we evaluated the effects of tDCS treatment and Mesenchymal stem cells (MSCs) transplantation on remyelination ability of a Cuprizone (CPZ)-induced demyelination mouse model.

View Article and Find Full Text PDF

Role of immune regulatory cells in breast cancer: Foe or friend?

Int Immunopharmacol

July 2021

Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China. Electronic address:

Breast cancer (BC) is the most common cancer among women between the ages of 20 and 50, affecting more than 2.1 million people and causing the annual death of more than 627,000 women worldwide. Based on the available knowledge, the immune system and its components are involved in the pathogenesis of several malignancies, including BC.

View Article and Find Full Text PDF

Synergistic therapeutic effect of mesenchymal stem cells and tolerogenic dendritic cells in an acute colitis mouse model.

Int Immunopharmacol

November 2020

Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:

Cell-based therapy with tolerizing cells has been applied for the treatment of inflammatory bowel disease (IBD) in previous experimental and clinical studies with promising results. In the current study, we utilized the dextran sulfate sodium (DSS)-induced colitis model, to investigate if tolerogenic dendritic cell-mesenchymal stem cell (tDC-MSC) combination therapy can augment the therapeutic effects of single transplantation of each cell type. The effect of MSC and tDC co-transplantation on the severity of colitis was assessed by daily monitoring of body weight, stool consistency, and rectal bleeding, and compared with control groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!