Background: Severe steroid-insensitive asthma is a substantial clinical problem. Effective treatments are urgently required, however, their development is hampered by a lack of understanding of the mechanisms of disease pathogenesis. Steroid-insensitive asthma is associated with respiratory tract infections and noneosinophilic endotypes, including neutrophilic forms of disease. However, steroid-insensitive patients with eosinophil-enriched inflammation have also been described. The mechanisms that underpin infection-induced, severe steroid-insensitive asthma can be elucidated by using mouse models of disease.
Objective: We sought to develop representative mouse models of severe, steroid-insensitive asthma and to use them to identify pathogenic mechanisms and investigate new treatment approaches.
Methods: Novel mouse models of Chlamydia, Haemophilus influenzae, influenza, and respiratory syncytial virus respiratory tract infections and ovalbumin-induced, severe, steroid-insensitive allergic airway disease (SSIAAD) in BALB/c mice were developed and interrogated.
Results: Infection induced increases in the levels of microRNA (miRNA)-21 (miR-21) expression in the lung during SSIAAD, whereas expression of the miR-21 target phosphatase and tensin homolog was reduced. This was associated with an increase in levels of phosphorylated Akt, an indicator of phosphoinositide 3-kinase (PI3K) activity, and decreased nuclear histone deacetylase (HDAC)2 levels. Treatment with an miR-21-specific antagomir (Ant-21) increased phosphatase and tensin homolog levels. Treatment with Ant-21, or the pan-PI3K inhibitor LY294002, reduced PI3K activity and restored HDAC2 levels. This led to suppression of airway hyperresponsiveness and restored steroid sensitivity to allergic airway disease. These observations were replicated with SSIAAD associated with 4 different pathogens.
Conclusion: We identify a previously unrecognized role for an miR-21/PI3K/HDAC2 axis in SSIAAD. Our data highlight miR-21 as a novel therapeutic target for the treatment of this form of asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2016.04.038 | DOI Listing |
Sci Transl Med
January 2025
Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.
In prednisone-dependent severe asthma, uncontrolled sputum eosinophilia is associated with increased numbers of group 2 innate lymphoid cells (ILC2s). These cells represent a relatively steroid-insensitive source of interleukin-5 (IL-5) and IL-13 and are considered critical drivers of asthma pathology. The abundance of ILC subgroups in severe asthma with neutrophilic or mixed granulocytic (both eosinophilic and neutrophilic) airway inflammation, prone to recurrent infective exacerbations, remains unclear.
View Article and Find Full Text PDFHeliyon
September 2024
, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China.
J Asthma
November 2024
Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
Objective: Down-regulation of bronchial epithelial E-cadherin is an important of feature of severe asthma, including steroid-insensitive asthma. Yet, the mechanisms involved in E-cadherin disruption are not fully understood. This study was aimed to investigate the role of glucose transporter 1 (GLUT1) in dysregulation of E-cadherin in toluene diisocyanate (TDI)-induced steroid-insensitive asthma.
View Article and Find Full Text PDFInflammation
December 2023
Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Biomed Pharmacother
June 2023
Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China. Electronic address:
Background And Purpose: Mitochondrial dysfunction is an essential part of the pathophysiology of asthma, and potential treatments that target the malfunctioning mitochondria have attracted widespread attention. We have previously demonstrated that aberrant epithelial β-catenin signaling played a crucial role in a toluene diisocyanate (TDI)-induced steroid-insensitive asthma model. The objective of this study was to determine if the mitochondrially targeted antioxidant mitoquinone(MitoQ) regulated the activation of β-catenin in TDI-induced asthma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!