Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Non-negative matrix factorization (NMF) has been one of the most popular methods for feature learning in the field of machine learning and computer vision. Most existing works directly apply NMF on high-dimensional image datasets for computing the effective representation of the raw images. However, in fact, the common essential information of a given class of images is hidden in their low rank parts. For obtaining an effective low-rank data representation, we in this paper propose a non-negative low-rank matrix factorization (NLMF) method for image clustering. For the purpose of improving its robustness for the data in a manifold structure, we further propose a graph regularized NLMF by incorporating the manifold structure information into our proposed objective function. Finally, we develop an efficient alternating iterative algorithm to learn the low-dimensional representation of low-rank parts of images for clustering. Alternatively, we also incorporate robust principal component analysis into our proposed scheme. Experimental results on four image datasets reveal that our proposed methods outperform four representative methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2016.2585355 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!