A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discharge Driven Nitrogen Dynamics in a Mesoscale River Basin As Constrained by Stable Isotope Patterns. | LitMetric

Nitrate loads and corresponding dual-isotope signatures were used to evaluate large scale N dynamics and trends in a river catchment with a strong anthropogenic gradient (forest conservation areas in mountain regions, and intensive agriculturally used lowlands). The Bode River catchment with an area of 3200 km(2) in the Harz Mountains and central German lowlands was investigated by a two years monitoring program including 133 water sampling points each representing a subcatchment. Based on discharge data either observed or simulated by the mesoscale hydrological model (mHM) a load based interpretation of hydrochemical and isotope data was conducted. Nitrate isotopic signatures in the entire catchment are influenced by (I) the contribution of different nitrogen sources, (II) by variable environmental conditions during the formation of nitrate, and (III) by a minor impact of denitrification. For major tributaries, a relationship between discharge and nitrate isotopic signatures is observed. This may in part be due to the fact, that during periods of higher hydrologic activity a higher wash out of isotopically lighter nitrate formed by bacterial nitrification processes of reduced or organic soil nitrogen occurs. Beyond that, in-stream denitrification seems to be more intense during periods of low flow.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b01057DOI Listing

Publication Analysis

Top Keywords

river catchment
8
nitrate isotopic
8
isotopic signatures
8
nitrate
5
discharge driven
4
driven nitrogen
4
nitrogen dynamics
4
dynamics mesoscale
4
mesoscale river
4
river basin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!