A stable hollow copper silicide cage with Ih symmetry, Cu20Si12, constituted of a copper dodecahedron and a silicon icosahedron, was investigated using density functional theory. Molecular dynamics simulations show that Cu20Si12 retains its geometric topology up to an effective temperature of about 962 K. The molecule has a HOMO-LUMO gap of 1.099 eV, indicating its relatively high chemical stability. These frontier molecular orbitals show clear characteristics of hybridization between Si 3p and Cu 3d electrons. This proposed structure helps to extend the range of high-symmetry molecular polyhedral species. The hollow space within Cu20Si12 can be used to accommodate other atoms or molecules and emphasizes the benefit of studying endohedral fullerenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.6b05258 | DOI Listing |
Molecules
January 2025
ICGM, Univ Montpellier, CNRS, ENSCM (Institut Charles Gerhardt Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier), 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France.
A first -type tricyclic 8-8-8 (three fused-8-membered ring) laddersiloxane functionalized with four azido groups was successfully synthesized through efficient and highly selective hydrosilylation and nucleophilic substitution, achieving an excellent overall yield. The starting material, a tetravinyl-substituted 8-8-8 laddersiloxane, was prepared via a straightforward and scalable method. The obtained azido-functionalized ladder compound, fully characterized, constitutes a versatile building block for hybrid materials.
View Article and Find Full Text PDFSci Total Environ
January 2025
Camborne School of Mines, Department of Earth and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK; Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK.
Acid mine drainage (AMD) is a worldwide problem that degrades river systems and is difficult and expensive to remediate. To protect affected catchments, it is vital to understand the behaviour of AMD-related metal(loid) contaminants as a function of space and time. To address this, the sources, loads and transport mechanisms of arsenic (As), copper (Cu), zinc (Zn), iron (Fe) and sulfur (S) in a representative AMD-affected catchment (the Carnon River in Cornwall, UK) were determined over a 12-month sampling period and with 22 years of monitoring data collected by the Environment Agency (England) (EA).
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece. Electronic address:
Gliomas constitute the most prevalent primary central nervous system tumors, often characterized by complex metabolic profile, genomic instability, and aggressiveness, leading to frequent relapse and high mortality rates. Traditional treatments are commonly ineffective because of gliomas increased heterogeneity, invasive characteristics and resistance to chemotherapy. Among several pathways affecting cellular homeostasis, cuproptosis has recently emerged as a novel type of programmed cell death, triggered by accumulation of copper ions.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic.
Blue phosphorene, a two-dimensional, hexagonal-structured, semiconducting phosphorus, has gained attention as it is considered easier to synthesize on metal surfaces than its allotrope, black phosphorene. Recent studies report different structures of phosphorene, for example, on Cu(111), but the underlying mechanisms of their formation are not known. Here, using a combination of in situ ultrahigh vacuum low-energy electron microscopy and in vacuo scanning tunneling microscopy, we determine the time evolution of the surface structure and morphology during the deposition of phosphorus on single-crystalline Cu(111).
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China.
Hybrid excitons formed via resonant hybridization in 2D material heterostructures feature both large optical and electrical dipoles, providing a promising platform for many-body exciton physics and correlated electronic states. However, hybrid excitons at organic-inorganic interface combining the advantages of both Wannier-Mott and Frenkel excitons remain elusive. Here, hybrid excitons are reported in the copper phthalocyanine/molybdenum diselenide (CuPc/MoSe) heterostructure (HS) featuring strong molecular orientation dependence by low-temperature photoluminescence and absorption spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!