Aim: Autologous as well as allogeneic CD8+ T cells transduced with tumor antigen specific T cell receptors (TCR) may cause significant tumor lysis upon adoptive transfer. Besides unpredictable life-threatening off-target effects, these TCRs may unexpectedly commit fratricide. We hypothesized lysosome-associated membrane glycoprotein 1 (LAMP1, CD107a) to be a marker for fratricide in TCR transgenic CD8+ T cells.

Methods: We identified HLA-A*02:01/peptide-restricted T cells directed against ADRB3295. After TCR identification, we generated HLA-A*02:01/peptide restricted TCR transgenic T cells by retroviral transduction and tested T cell expansion rates as well as A*02:01/peptide recognition and ES killing in ELISpot and xCELLigence assays. Expansion arrest was analyzed via Annexin and CD107a staining. Results were compared to CHM1319-TCR transgenic T cells.

Results: Beta-3-adrenergic receptor (ADRB3) as well as chondromodulin-1 (CHM1) are over-expressed in Ewing Sarcoma (ES) but not on T cells. TCR transgenic T cells demonstrated HLA-A*02:01/ADRB3295 mediated ES recognition and killing in ELISpot and xCELLigence assays. 24h after TCR transduction, CD107a expression correlated with low expansion rates due to apoptosis of ADRB3 specific T cells in contrast to CHM1 specific transgenic T cells. Amino-acid exchange scans clearly indicated the cross-reactive potential of HLA-A*02:01/ADRB3295- and HLA-A*02:01/CHM1319-TCR transgenic T cells. Comparison of peptide motive binding affinities revealed extended fratricide among ADRB3295 specific TCR transgenic T cells in contrast to CHM1319.

Conclusion: Amino-acid exchange scans alone predict TCR cross-reactivity with little specificity and thus require additional assessment of potentially cross-reactive HLA-A*02:01 binding candidates. CD107a positivity is a marker for fratricide of CD8+ TCR transgenic T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302936PMC
http://dx.doi.org/10.18632/oncotarget.10647DOI Listing

Publication Analysis

Top Keywords

transgenic cells
24
tcr transgenic
20
cells
11
transgenic
9
tcr
9
lysosome-associated membrane
8
membrane glycoprotein
8
transgenic cd8+
8
cd8+ cells
8
cells directed
8

Similar Publications

Novel Cystic Fibrosis Ferret Model Enables Visualization of CFTR Expression Cells and Genetic CFTR Reactivation.

Hum Gene Ther

January 2025

Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Cystic fibrosis (CF) is caused by mutations in the (). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration.

View Article and Find Full Text PDF

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.

View Article and Find Full Text PDF

Identification of a Subpopulation of Astrocyte Progenitor Cells in the Neonatal Subventricular Zone: Evidence that Migration is Regulated by Glutamate Signaling.

Neurochem Res

January 2025

Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.

In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes.

View Article and Find Full Text PDF

Alzheimer disease is a neurodegenerative pathology-modifying mitochondrial metabolism with energy impairments where the effects of biological sex and DNA repair deficiencies are unclear. We investigated the therapeutic potential of dietary ketosis alone or with supplemental nicotinamide riboside (NR) on hippocampal intermediary metabolism and mitochondrial bioenergetics in older male and female wild-type (Wt) and 3xTgAD-DNA polymerase-β-deficient (3xTg/POLβ) (AD) mice. DNA polymerase-β is a key enzyme in DNA base excision repair (BER) of oxidative damage that may also contribute to mitochondrial DNA repair.

View Article and Find Full Text PDF

FAST: Fast, free, consistent, and unsupervised oligodendrocyte segmentation and tracking system.

eNeuro

January 2025

Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA.

To develop reparative therapies for neurological disorders like multiple sclerosis (MS), we need to better understand the physiology of loss and replacement of oligodendrocytes, the cells that make myelin and are the target of damage in MS. In vivo two-photon fluorescence microscopy allows direct visualization of oligodendrocytes in the intact brain of transgenic mouse models, promising a deeper understanding of the longitudinal dynamics of replacing oligodendrocytes after damage. However, the task of tracking the fate of individual oligodendrocytes requires extensive effort for manual annotation and is especially challenging in three-dimensional images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!