Coherent Absorption of N00N States.

Phys Rev Lett

School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom.

Published: July 2016

Recent results in deeply subwavelength thickness films demonstrate coherent control and logical gate operations with both classical and single-photon light sources. However, quantum processing and devices typically involve more than one photon and nontrivial input quantum states. Here we experimentally investigate two-photon N00N state coherent absorption in a multilayer graphene film. Depending on the N00N state input phase, it is possible to selectively choose between single- or two-photon absorption of the input state in the graphene film. These results demonstrate that coherent absorption in the quantum regime exhibits unique features, opening up applications in multiphoton spectroscopy and imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.023601DOI Listing

Publication Analysis

Top Keywords

coherent absorption
12
demonstrate coherent
8
n00n state
8
graphene film
8
coherent
4
absorption n00n
4
n00n states
4
states deeply
4
deeply subwavelength
4
subwavelength thickness
4

Similar Publications

Spatiotemporal Spectroscopy of Fast Excited-State Diffusion in 2D Covalent Organic Framework Thin Films.

J Am Chem Soc

January 2025

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.

Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.

View Article and Find Full Text PDF

Double-quantum filtered Na NMR and MRI: Selective detection of ordered sodium in an inhomogeneous B field.

J Magn Reson

November 2024

Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.

Double-quantum filtered Na NMR experiments with one or two "magic angle" (54.7°) pulses in the filter step are widely used for selective observation of sodium ions that are interacting with ordered biological structures ("ordered sodium") and hence exhibit a distribution of quadrupolar splittings in their NMR spectrum. This approach has recently been extended to Na MRI where the conventional experiment has been modified, omitting the 180° pulse to reduce the absorption of radiofrequency energy during human studies.

View Article and Find Full Text PDF

Objective: To describe the anatomical and functional outcome of autologous internal limiting membrane (ILM) transplant with 27-gauge plus (27G+) three ports pars plana vitrectomy (PPV) in failed and recurrent full-thickness macular holes (MH) in a spectrum of pathologies.

Study Design: Observational cohort study Methods: Seven eyes of seven patients who had failed or recurrent MH were included from January 2017 to January 2022. A single vitreoretinal surgeon performed all surgeries using a 27G+ PPV system in a tertiary care hospital.

View Article and Find Full Text PDF

We describe the design and performance of a magnetic bottle electron spectrometer (MBES) for high-energy electron spectroscopy. Our design features a 2 m long electron drift tube and electrostatic retardation lens, achieving sub-electronvolt (eV) electron kinetic energy resolution for high energy (several hundred eV) electrons with a close to 4π collection solid angle. A segmented anode electron detector enables the simultaneous collection of photoelectron spectra in high resolution and high collection efficiency modes.

View Article and Find Full Text PDF

Multiconfigurational Electronic Structure of Nickel Cross-Coupling Catalysts Revealed by X-ray Absorption Spectroscopy.

J Phys Chem Lett

December 2024

Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States.

Ni 2,2'-bipyridine complexes are commonly invoked intermediates in metallaphotoredox cross-coupling reactions. Despite their ubiquity, design principles targeting improved catalytic performance remain underdetermined. A series of Ni(bpy)(Ar)Cl (R = MeOOC, -Bu, R' = CH, CF) complexes were proposed to have multiconfigurational electronic structures on the basis of multiconfigurational/multireference calculations, with significant mixing of Ni → bpy metal-to-ligand charge transfer (MLCT) configurations into the ground-state wave function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!