Through regulation of the extracellular fluid volume, the kidneys provide important long-term regulation of blood pressure. At the level of the individual functional unit (the nephron), pressure and flow control involves two different mechanisms that both produce oscillations. The nephrons are arranged in a complex branching structure that delivers blood to each nephron and, at the same time, provides a basis for an interaction between adjacent nephrons. The functional consequences of this interaction are not understood, and at present it is not possible to address this question experimentally. We provide experimental data and a new modeling approach to clarify this problem. To resolve details of microvascular structure, we collected 3D data from more than 150 afferent arterioles in an optically cleared rat kidney. Using these results together with published micro-computed tomography (μCT) data we develop an algorithm for generating the renal arterial network. We then introduce a mathematical model describing blood flow dynamics and nephron to nephron interaction in the network. The model includes an implementation of electrical signal propagation along a vascular wall. Simulation results show that the renal arterial architecture plays an important role in maintaining adequate pressure levels and the self-sustained dynamics of nephrons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957782 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1004922 | DOI Listing |
BMC Cardiovasc Disord
December 2024
Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China.
Objective: To screen Myocardial ischemia-reperfusion Injury in mice. adenosine monophate-activatedprotein kinase (AMPK) -related differentially expressed circularRNA (circRNA) in MIRI model, Ampk-related circRNA network was drawn to provide possible ideas for the prevention and treatment of MIRI.
Methods: The mouse MIRI model was constructed by ligation of the left anterior descending artery.
J Ethnopharmacol
December 2024
Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China. Electronic address:
Ethnopharmacological Relevance: The Daqinjiao decoction (DQJT), a classical prescription, has been utilized for millennia in stroke management, yet its underlying mechanisms remained obscure.
Aim Of The Study: The aim of this study was to elucidate the mechanisms through which DQJT mitigates cerebral ischemia/reperfusion injury (CI/RI).
Materials And Methods: The quantification of DQJT's primary components were performed by HPLC.
J Integr Neurosci
December 2024
Department of Neurology, Hainan West Central Hospital, 571799 Danzhou, Hainan, China.
Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.
Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.
Cureus
November 2024
General Surgery, Northeast Georgia Medical Center Gainesville, Gainesville, USA.
Coronary artery disease (CAD) remains a leading global cause of morbidity and mortality, underscoring the need for effective cardiovascular risk stratification and preventive strategies. Coronary artery calcium (CAC) scoring, traditionally performed using electrocardiogram (ECG)-gated cardiac computed tomography (CT) scans, has been widely validated as a robust tool for assessing cardiovascular risk. However, its application has been largely limited to high-risk populations due to the costs, technical requirements, and limited accessibility of cardiac CT scans.
View Article and Find Full Text PDFMed J Armed Forces India
December 2024
Senior Medical Officer (Dermatology), Govt of NCT of Delhi, Bhagwan Mahavir Hospital, Pitampura, Delhi, India.
Background: Chronic venous insufficiency (CVI) causes cutaneous changes. This prospective observational study reveals dermoscopic findings in CVI.
Methods: Successive CVI patients of ≥18 years were included in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!