Through regulation of the extracellular fluid volume, the kidneys provide important long-term regulation of blood pressure. At the level of the individual functional unit (the nephron), pressure and flow control involves two different mechanisms that both produce oscillations. The nephrons are arranged in a complex branching structure that delivers blood to each nephron and, at the same time, provides a basis for an interaction between adjacent nephrons. The functional consequences of this interaction are not understood, and at present it is not possible to address this question experimentally. We provide experimental data and a new modeling approach to clarify this problem. To resolve details of microvascular structure, we collected 3D data from more than 150 afferent arterioles in an optically cleared rat kidney. Using these results together with published micro-computed tomography (μCT) data we develop an algorithm for generating the renal arterial network. We then introduce a mathematical model describing blood flow dynamics and nephron to nephron interaction in the network. The model includes an implementation of electrical signal propagation along a vascular wall. Simulation results show that the renal arterial architecture plays an important role in maintaining adequate pressure levels and the self-sustained dynamics of nephrons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957782PMC
http://dx.doi.org/10.1371/journal.pcbi.1004922DOI Listing

Publication Analysis

Top Keywords

arterial network
8
renal arterial
8
modeling kidney
4
kidney hemodynamics
4
hemodynamics probability-based
4
probability-based topology
4
topology arterial
4
network regulation
4
regulation extracellular
4
extracellular fluid
4

Similar Publications

Objective: To screen Myocardial ischemia-reperfusion Injury in mice. adenosine monophate-activatedprotein kinase (AMPK) -related differentially expressed circularRNA (circRNA) in MIRI model, Ampk-related circRNA network was drawn to provide possible ideas for the prevention and treatment of MIRI.

Methods: The mouse MIRI model was constructed by ligation of the left anterior descending artery.

View Article and Find Full Text PDF

Classical prescription Daqinjiao decoction inhibit cerebral ischemia/reperfusion induced necroptosis and ferroptosis through multiple mechanisms.

J Ethnopharmacol

December 2024

Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China. Electronic address:

Ethnopharmacological Relevance: The Daqinjiao decoction (DQJT), a classical prescription, has been utilized for millennia in stroke management, yet its underlying mechanisms remained obscure.

Aim Of The Study: The aim of this study was to elucidate the mechanisms through which DQJT mitigates cerebral ischemia/reperfusion injury (CI/RI).

Materials And Methods: The quantification of DQJT's primary components were performed by HPLC.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.

Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.

View Article and Find Full Text PDF

Coronary artery disease (CAD) remains a leading global cause of morbidity and mortality, underscoring the need for effective cardiovascular risk stratification and preventive strategies. Coronary artery calcium (CAC) scoring, traditionally performed using electrocardiogram (ECG)-gated cardiac computed tomography (CT) scans, has been widely validated as a robust tool for assessing cardiovascular risk. However, its application has been largely limited to high-risk populations due to the costs, technical requirements, and limited accessibility of cardiac CT scans.

View Article and Find Full Text PDF

Dermoscopic findings in chronic venous insufficiency.

Med J Armed Forces India

December 2024

Senior Medical Officer (Dermatology), Govt of NCT of Delhi, Bhagwan Mahavir Hospital, Pitampura, Delhi, India.

Background: Chronic venous insufficiency (CVI) causes cutaneous changes. This prospective observational study reveals dermoscopic findings in CVI.

Methods: Successive CVI patients of ≥18 years were included in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!