Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host-guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD < 1.0 Å to the experimental conformation for 85% of our data set in contrast to success rates of 67-75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10-29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1-10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465426 | PMC |
http://dx.doi.org/10.1021/acs.jctc.6b00250 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chinese Osteo-traumatology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China. Electronic address:
Fatigue is a pathological state that can impair physical and cognitive performance, making the development of effective therapeutic strategies crucial. In this study, an acid polysaccharide (MHa) was isolated from Mentha haplocalyx. Structural analysis showed that MHa (40.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria.
Replication forks encounter various impediments, which induce fork stalling and threaten genome stability, yet the precise dynamics of fork stalling and restart at the single-cell level remain elusive. Herein, we devise a live-cell microscopy-based approach to follow hydroxyurea-induced fork stalling and subsequent restart at 30 s resolution. We measure two distinct processes during fork stalling.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Changping Laboratory, No. 28 Life Science Park Rd., Beijing 102206, China.
Accurate modeling of host-guest systems is challenging in modern computational chemistry. It requires intermolecular interaction patterns to be correctly described and, more importantly, the dynamic behaviors of macrocyclic hosts to be accurately modeled. Pillar[]arenes as a crucial family of macrocycles play a critical role in host-guest chemistry and biomedical applications.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina.
We report here a new ligand for the peroxisome-proliferator-activated receptor type α (PPARα), an N-tosyl hydrazone benzopyran that was designed throughout the mapping of the polar zone of the binding site of PPARα; such a compound displays a strong activity on this receptor that is comparable to that of the reference compound WY-14643. For the design of the -tosyl hydrazone benzopyran, we have carried out an exhaustive conformational study of WY-14643 and a previously reported hydrazine benzopyran derivative using conformational potential energy surfaces (PES). This study allowed us to map in a systematic way the entire binding site of the PPARα.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
January 2025
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
Molecular replacement (MR) is highly effective for biomolecular crystal structure determination, increasingly so as the database of known structures has increased. For candidates without recognizable similarity to known structures, however, crystal structure analyses have nearly always required experiments for de novo phase evaluation. Now, with the unprecedented accuracy of AlphaFold predictions of protein structures from amino-acid sequences, an appreciable expansion of the reach of MR for proteins is realized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!