Was the Chlamydial Adaptative Strategy to Tryptophan Starvation an Early Determinant of Plastid Endosymbiosis?

Front Cell Infect Microbiol

Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France.

Published: September 2017

Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids in a common inclusion. The intracellular pathogens are thought to have donated those critical transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol. We now review the reasons underlying other chlamydial lateral gene transfers evidenced in the descendants of plastid endosymbiosis. In particular we show that half of the genes encoding enzymes of tryptophan synthesis in Archaeplastida are of chlamydial origin. Tryptophan concentration is an essential cue triggering two alternative modes of replication in Chlamydiales. In addition, sophisticated tryptophan starvation mechanisms are known to act as antibacterial defenses in animal hosts. We propose that Chlamydiales have donated their tryptophan operon to the emerging plastid to ensure increased synthesis of tryptophan by the plastid ancestor. This would have allowed massive expression of the tryptophan rich chlamydial transporters responsible for symbiosis. It would also have allowed possible export of this valuable amino-acid in the inclusion of the tryptophan hungry pathogens. Free-living single cell cyanobacteria are devoid of proteins able to transport this amino-acid. We therefore investigated the phylogeny of the Tyr/Trp transporters homologous to E. coli TyrP/Mre and found yet another LGT from Chlamydiales to Archaeplastida thereby considerably strengthening our proposal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916741PMC
http://dx.doi.org/10.3389/fcimb.2016.00067DOI Listing

Publication Analysis

Top Keywords

tryptophan
8
tryptophan starvation
8
photosynthetic carbon
8
chlamydiales
5
chlamydial
4
chlamydial adaptative
4
adaptative strategy
4
strategy tryptophan
4
starvation early
4
early determinant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!