The early development of quantitative electron probe microanalysis, first using crystal spectrometers, then energy dispersive x-ray spectrometers (EDXS), demonstrated that elements could be detected at 0.001 mass fraction level and major concentrations measured within 2 % relative uncertainty. However, during this period of extensive investigation and evaluation, EDXS detectors were not able to detect x rays below 1 keV and all quantitative analysis was performed using a set of reference standards measured on the instrument. Now that EDXS systems are often used without standards and are increasingly being used to analyse elements using lines well below 1 keV, accuracy can be considerably worse than is documented in standard textbooks. Spectrum processing techniques found most applicable to EDXS have now been integrated into total system solutions and can give excellent results on selected samples. However, the same techniques fail in some applications because of a variety of instrumental effects. Prediction of peak shape, width and position for every characteristic line and measurement of background intensity is complicated by variations in response from system to system and with changing count rate. However, with an understanding of the fundamental sources of error, even a total system can be tested like a "black box" in areas where it is most likely to fail and thus establish the degree of confidence that should apply in the intended application. This approach is particularly important when the microanalysis technique is applied at lower electron beam voltages where the extraction of line intensities is complicated by extreme peak overlap and higher background levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863855 | PMC |
http://dx.doi.org/10.6028/jres.107.045 | DOI Listing |
JMIR Form Res
January 2025
Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom.
Background: Traumatic brain injury (TBI) is a significant public health issue and a leading cause of death and disability globally. Advances in clinical care have improved survival rates, leading to a growing population living with long-term effects of TBI, which can impact physical, cognitive, and emotional health. These effects often require continuous management and individualized care.
View Article and Find Full Text PDFClin Exp Optom
January 2025
Department of Ophthalmology, Giresun University, Giresun, Turkey.
Clinical Relevance: The prevalence of male androgenetic alopecia is increasing worldwide. Evaluation of dry eye parameters and meibomian glands of male androgenetic alopecia patients may help to better understand the effect of this disease on dry eye and to provide appropriate treatment for these patients.
Background: The aim of this work is to evaluate the relationship between male androgenetic alopecia, dry eye, and meibomian gland function.
EJNMMI Phys
January 2025
Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden.
Background: System calibration is essential for accurate SPECT/CT dosimetry. However, count losses due to dead time and pulse pileup may cause calibration errors, in particular for I, where high count rates may be encountered. Calibration at low count rates should also be avoided to minimise detrimental effects from e.
View Article and Find Full Text PDFJ Adolesc Health
January 2025
The National Alliance to Advance Adolescent Health/Got Transition, Washington, D.C.
Purpose: There is a paucity of evidence examining clinician experiences with structured health-care transition (HCT) programs. Among HCT Learning Collaborative participants, this study describes clinician experiences with implementation of a structured HCT process: Got Transition's 6 Core Elements.
Methods: Representative members from 6 health systems designed a survey to collect clinician feedback regarding HCT and demographic and practice information.
BMC Med Educ
January 2025
School of Nursing, Seirei Christopher University, Hamamatsu, Shizuoka, Japan.
Background: Point-of-care ultrasound (POCUS) can be used in a variety of clinical settings and is a safe and powerful tool for ultrasound-trained healthcare providers, such as physicians and nurses; however, the effectiveness of ultrasound education for nursing students remains unclear. This prospective cohort study aimed to examine the sustained educational impact of bladder ultrasound simulation among nursing students.
Methods: To determine whether bladder POCUS simulation exercises sustainably improve the clinical proficiency regarding ultrasound examinations among nursing students, evaluations were conducted before and after the exercise and were compared with those after the 1-month follow-up exercise.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!