Efficient delivery of viruses, proteins and biological macromelecules into a micrometer-sized focal spot of an XFEL beam for coherent diffraction imaging inspired new development in touch-free particle injection methods in gaseous and vacuum environments. This paper lays out our ongoing effort in constructing an all-optical particle delivery approach that uses piconewton photophoretic and femtonewton light-pressure forces to control particle delivery into the XFEL beam. We combine a spatial light modulator (SLM) and an electrically tunable lens (ETL) to construct a variable-divergence vortex beam providing dynamic and stable positioning of levitated micrometer-size particles, under normal atmospheric pressure. A sensorless wavefront correction approach is used to reduce optical aberrations to generate a high quality vortex beam for particle manipulation. As a proof of concept, stable manipulation of optically-controlled axial motion of trapped particles is demonstrated with a response time of 100ms. In addition, modulation of trapping intensity provides a measure of the mass of a single, isolated particle. The driving signal of this oscillatory motion can potentially be phase-locked to an external timing signal enabling synchronization of particle delivery into the x-ray focus with XFEL pulse train.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948639 | PMC |
http://dx.doi.org/10.1364/BOE.7.002902 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!