Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927581PMC
http://dx.doi.org/10.3389/fpls.2016.00964DOI Listing

Publication Analysis

Top Keywords

meloidogyne incognita
8
misp12
8
effector misp12
8
plant defense
8
defense response
8
nematode parasitism
8
meloidogyne spp
8
pathway defense-related
8
defense-related genes
8
novel meloidogyne
4

Similar Publications

Aim: Bacillus subtilis is usually found in soil, and their biocontrol and plant growth-promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic B. subtilis from seeds is limited.

View Article and Find Full Text PDF

Meloidogyne incognita, a highly destructive plant-parasitic nematode, poses a significant threat to crop production. The reliance on chemical nematicides for nematode control has been crucial; however, the banning of many effective nematicides due to their adverse effects has necessitated the exploration of alternative solutions. Rhizosphere biocontrol bacteria, particularly strains of Bacillus, have demonstrated promising results in managing plant-parasitic nematodes.

View Article and Find Full Text PDF

Bioactive Secondary Metabolites from Against .

Microorganisms

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.

Root-knot nematodes (RKNs) are pathogens that endanger a wide range of crops and cause serious global agricultural losses. In this study, we investigated metabolites of the endoparasitic fungus YMF1.01751, with the expectation of discovering valuable biocontrol compounds.

View Article and Find Full Text PDF

Root-knot nematodes Meloidogyne incognita are sedentary endoparasites with a broad host range which includes economically important medicinal plant species including Turmeric. Turmeric (Curcuma longa) is an important medicinal and aromatic plant (MAPs) grown at Baruasagar town in Jhansi district where root-knot nematodes are a major threat in production fields. The invasion of M.

View Article and Find Full Text PDF

Influence of Sweetpotato Resistance on the Development of and .

Phytopathology

January 2025

LSU AgCenter, 302 Life Science Building, Baton Rouge, Louisiana, United States, 70803;

and are major pests of sweetpotato. The ability of to cause symptoms and reproduce on nematode-resistant cultivars threatens the sweetpotato industry. To evaluate the penetration, development, and reproduction of and on sweetpotato, a time-course study was conducted using the genotypes 'LA14-31' (resistant to and intermediate-resistant to ), 'LA18-100' (susceptible to and resistant to ), and 'LA19-65' (resistant to and susceptible to ), with 'Beauregard' (susceptible to both species) and 'Jewel' (resistant to and intermediate-resistant to ) as controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!