Application of Somatic Embryogenesis in Woody Plants.

Front Plant Sci

Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences Shanghai, China.

Published: July 2016

Somatic embryogenesis is a developmental process where a plant somatic cell can dedifferentiate to a totipotent embryonic stem cell that has the ability to give rise to an embryo under appropriate conditions. This new embryo can further develop into a whole plant. In woody plants, somatic embryogenesis plays a critical role in clonal propagation and is a powerful tool for synthetic seed production, germplasm conservation, and cryopreservation. A key step in somatic embryogenesis is the transition of cell fate from a somatic cell to embryo cell. Although somatic embryogenesis has already been widely used in a number of woody species, propagating adult woody plants remains difficult. In this review, we focus on molecular mechanisms of somatic embryogenesis and its practical applications in economic woody plants. Furthermore, we propose a strategy to improve the process of somatic embryogenesis using molecular means.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919339PMC
http://dx.doi.org/10.3389/fpls.2016.00938DOI Listing

Publication Analysis

Top Keywords

somatic embryogenesis
28
woody plants
16
somatic
8
plants somatic
8
somatic cell
8
embryogenesis
7
woody
5
cell
5
application somatic
4
embryogenesis woody
4

Similar Publications

Background: Kaposiform lymphangiomatosis (KLA) is a complex lymphatic anomaly associated with a somatic activating NRAS p.Q61R (NRAS) mutation. KLA is characterized by malformed lymphatic vessels that can lead to effusions and coagulopathy.

View Article and Find Full Text PDF

Wilms tumor (WT) is the most common kidney cancer in infants and young children. The determination of the clonality of bilateral WTs is critical to the treatment, because lineage-independent and metastatic tumors may require different treatment strategies. Here we found synchronous bilateral WT (n = 24 tumors from 12 patients) responded differently to preoperative chemotherapy.

View Article and Find Full Text PDF

Mechano-regulation of germline development, maintenance, and differentiation.

BBA Adv

November 2024

Department of Biology, Trivedi School of Biosciences, Ashoka University, No. 2 Rajiv Gandhi Educational City, Sonipat, Haryana 131029, India.

Biochemical signaling arising from mechanical force-induced physical changes in biological macromolecules is a critical determinant of key physiological processes across all biological lengths and time scales. Recent studies have deepened our understanding of how mechano-transduction regulates somatic tissues such as those in alveolar, gastrointestinal, embryonic, and skeleto-muscular systems. The germline of an organism has a heterogeneous composition - of germ cells at different stages of maturation and mature gametes, often supported and influenced by their accessory somatic tissues.

View Article and Find Full Text PDF

Background: Pinus thunbergii is an economically important conifer species that plays a fundamental role in forest ecosystems. However, the population has declined dramatically in recent years as a result of the pine wilt disease outbreak. Thus, developing pine wilt-resistant P.

View Article and Find Full Text PDF

Low-input CUT&Tag for efficient epigenomic profiling of zebrafish stage I oocytes.

Front Cell Dev Biol

December 2024

Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.

Histone modification signatures mark sites of transcriptional regulatory elements and regions of gene activation and repression. These sites vary among cell types and undergo dynamic changes during development and in diseases. Oocytes produce numerous maternal factors essential for early embryonic development, which are significantly influenced by epigenetic modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!