Mycoplasma pneumoniae: Current Knowledge on Macrolide Resistance and Treatment.

Front Microbiol

USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Univ. BordeauxBordeaux, France; USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, INRABordeaux, France; Laboratoire de Bactériologie, Centre Hospitalier Universitaire de BordeauxBordeaux, France.

Published: July 2016

Mycoplasma pneumoniae causes community-acquired respiratory tract infections, particularly in school-aged children and young adults. These infections occur both endemically and epidemically worldwide. M. pneumoniae lacks cell wall and is subsequently resistant to beta-lactams and to all antimicrobials targeting the cell wall. This mycoplasma is intrinsically susceptible to macrolides and related antibiotics, to tetracyclines and to fluoroquinolones. Macrolides and related antibiotics are the first-line treatment of M. pneumoniae respiratory tract infections mainly because of their low MIC against the bacteria, their low toxicity and the absence of contraindication in young children. The newer macrolides are now the preferred agents with a 7-to-14 day course of oral clarithromycin or a 5-day course of oral azithromycin for treatment of community-acquired pneumonia due to M. pneumoniae, according to the different guidelines worldwide. However, macrolide resistance has been spreading for 15 years worldwide, with prevalence now ranging between 0 and 15% in Europe and the USA, approximately 30% in Israel and up to 90-100% in Asia. This resistance is associated with point mutations in the peptidyl-transferase loop of the 23S rRNA and leads to high-level resistance to macrolides. Macrolide resistance-associated mutations can be detected using several molecular methods applicable directly from respiratory specimens. Because this resistance has clinical outcomes such as longer duration of fever, cough and hospital stay, alternative antibiotic treatment can be required, including tetracyclines such as doxycycline and minocycline or fluoroquinolones, primarily levofloxacin, during 7-14 days, even though fluoroquinolones and tetracyclines are contraindicated in all children and in children < 8 year-old, respectively. Acquired resistance to tetracyclines and fluoroquinolones has never been reported in M. pneumoniae clinical isolates but reduced susceptibility was reported in in vitro selected mutants. This article focuses on M. pneumoniae antibiotic susceptibility and on the development and the evolution of acquired resistance. Molecular detection of resistant mutants and therapeutic options in case of macrolide resistance will also be assessed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916212PMC
http://dx.doi.org/10.3389/fmicb.2016.00974DOI Listing

Publication Analysis

Top Keywords

macrolide resistance
12
mycoplasma pneumoniae
8
resistance
8
respiratory tract
8
tract infections
8
cell wall
8
macrolides antibiotics
8
tetracyclines fluoroquinolones
8
course oral
8
acquired resistance
8

Similar Publications

Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.

View Article and Find Full Text PDF

Pollution profiles, pathogenicity, and toxicity of bioaerosols in the atmospheric environment of urban general hospital in China.

Environ Pollut

January 2025

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.

Airborne microorganisms in hospitals present significant health risks to both patients and employees. However, their pollution profiles and associated hazards in different hospital areas remained largely unknown during the extensive use of masks and disinfectants. This study investigated the characteristics of bioaerosols in an urban general hospital during the COVID-19 pandemic and found that airborne bacteria and fungi concentrations range from 87±35 to 1037±275 CFU/m and 21±15 to 561±132 CFU/m, respectively, with the outpatient clinic and internal medicine ward showing the highest levels.

View Article and Find Full Text PDF

Antibiotic resistance genes (ARGs) in microorganisms and their indications for the nitrogen/sulfur cycle in the East China Sea sediments.

J Hazard Mater

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China.

Antibiotic resistance genes (ARGs) are emerging environmental pollutants, posing an escalating threat to public health and environmental security worldwide. However, the relationship between ARGs and microbial communities in the environment, as well as their ecological effects on the microbe-mediated materials cycle remain unclear. In this study, we investigated the spatial distribution pattern, influence mechanism, relationship with microorganisms, and their effects on the elemental cycling of ARGs in East China Sea sediments.

View Article and Find Full Text PDF

The growing resistance of bacteria to antibiotics is a serious problem in health care. The present study aims to assess the drug resistance of , , and isolated from infections in a multispecialty hospital over a 6-year period. Identification and antimicrobial susceptibility testing were performed using the VITEK2 automated system (Biomerieux).

View Article and Find Full Text PDF

Green chemistry principles are pivotal in driving sustainable and innovative solutions to global health challenges. This study explores a hydroalcoholic extract from (chestnut) burrs, an underutilized natural resource, as a potent source of antimicrobial compounds against (). The extract demonstrated significant bactericidal activity, synergizing effectively with clarithromycin and showing additive effects with metronidazole.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!