AI Article Synopsis

  • Toxoplasma gondii is a parasite that causes various health issues in humans, including encephalitis and congenital infections, by invading host cells through a specific mechanism known as the moving junction (MJ) complex.
  • The study introduces two promising compounds, NSC95522 and NSC179676, which can effectively target a key region in the AMA1 protein involved in the MJ complex formation, based on detailed virtual screening and molecular dynamics analyses.
  • These compounds show strong binding affinity and have been predicted to demonstrate significant inhibitory activity against the AMA1-RON2 complex, offering a potential new strategy to fight toxoplasmosis.

Article Abstract

Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951401PMC
http://dx.doi.org/10.5808/GI.2016.14.2.53DOI Listing

Publication Analysis

Top Keywords

hydrophobic cleft
12
complex formation
12
inhibitors targeting
8
toxoplasma gondii
8
apical membrane
8
membrane antigen
8
antigen ama1
8
leads nsc95522
8
nsc95522 nsc179676
8
ama1
5

Similar Publications

This study explores the interactions between pepsin and sodium dodecyl sulfate (SDS) using conductometric analysis and molecular docking to deepen our understanding of the role of pepsin. Conductometric studies were conducted to examine the micellization behavior of SDS in aqueous solutions of various sodium electrolytes (NaBr, Na₂SO₄, Na₃PO₄, and CH₃COONa) at temperatures ranging from 300.55 K to 320.

View Article and Find Full Text PDF

Covalent Fragments Acting as Tyrosine Mimics for Mutant p53-Y220C Rescue by Nucleophilic Aromatic Substitution.

ACS Pharmacol Transl Sci

December 2024

Lab for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany.

The tumor suppressor p53 is frequently mutated in human cancers. The Y220C mutant is the ninth most common p53 cancer mutant and is classified as a structural mutant, as it leads to strong thermal destabilization and degradation by creating a solvent-accessible hydrophobic cleft. To identify small molecules that thermally stabilize p53, we employed DSF to screen SAr-type electrophiles from our covalent fragment library (CovLib) for binding to different structural (Y220C, R282W) and DNA contact (R273H) mutants of p53.

View Article and Find Full Text PDF

Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome.

View Article and Find Full Text PDF

Protein engineering enables Serratia marcescens nuclease A to hydrolyze nucleic acids under high-salt conditions.

Int J Biol Macromol

December 2024

Synthetic Biology Department, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China. Electronic address:

Article Synopsis
  • Serratia marcescens Nuclease A (SmNucA) is commonly used in biopharmaceutical manufacturing to remove nucleotide impurities, but its effectiveness drops significantly in high-salt environments (up to 500 mM).
  • Researchers developed a variant called HighSalt NucA, which has four Lys mutations to enhance its ability to bind nucleic acids under these salty conditions, also revealing a new catalytic mechanism.
  • Additional experiments showed that other mutations (involving Arg and various hydrophobic or polar residues) also contribute to salt tolerance, allowing HighSalt NucA to maintain its activity and broaden its application potential in nucleic acid removal processes.
View Article and Find Full Text PDF

Since their inception in antibacterial therapy, macrolide-based antibiotics have significantly shaped the evolutionary pathways of pathogenic bacteria, driving them to develop diverse antimicrobial resistance (AMR) mechanisms. Among these, macrolide esterase, commonly referred to as erythromycin esterase, emerged as a critical defense mechanism, enabling bacteria to detoxify macrolides by hydrolyzing the macrolactone ring within the bacterial cell. In this study, we delve into the intricate interactions and conformational dynamics of erythromycin esterase C (EreC), a key member of the Ere enzyme family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!