We have characterized a human genomic clone that contains the 5' coding and 5' flanking sequences of the human parathyroid hormone-related protein gene (PTHrP). The 5' end of the gene contains three exons separated by two small introns of 60 and 165 bp, respectively. The coding region of the PTHrP gene exhibits significant structural homology to the human parathyroid hormone gene (PTH), including the position of at least two introns. However, there is no significant nucleotide sequence homology to the PTH gene within the intragenic region nor in the flanking genomic sequences. The PTHrP gene has been localized, by chromosomal in situ hybridization to bands p11 or p12, on human chromosome 12. Analysis of the 5'-noncoding DNA reveals a complex, putative regulatory region, with multiple potential transcription start points. Nucleotide sequence analysis shows the position of one consensus TATA sequence, at -514 bp, from the start of translation whereas the other regulatory domain is located at least 1 kb further 5' to this consensus TATA sequence. Evidence from the structure of a number of cDNA clones, as well as S1 nuclease and primer extension studies supports the hypothesis that the PTHrP gene contains at least two mRNA transcription start points that define two putative regulatory domains. The result of expression from these different promoters combined with an alternative splicing event would be to produce multiple forms of PTHrP mRNA that differ in the 5'-untranslated region. This analysis of the human PTHrP gene is the first report of a PTHrP gene for any species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0378-1119(89)90363-6 | DOI Listing |
Front Endocrinol (Lausanne)
December 2024
Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.
Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.
Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.
Endocr Relat Cancer
December 2024
M Maugham-Macan, Biomedical Science, University of the Sunshine Coast, Sippy Downs, Australia.
Bone is a common and debilitating site for metastatic cancer cell expansion. Skeletal metastasis is a multistage process, with primary stages of circulating tumour cells, progressing to a dormant state in vasculature and bone marrow niches, followed by tumorigenic reactivation, proliferation, and finally bone destruction. The frequency of bone metastasis is reconciled in Paget's "seed and soil" hypothesis, where a conducive microenvironment (bone niche) is essential for cancer cell colonisation.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
November 2024
Agri-pharmacy Group, School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK.
Front Cell Dev Biol
September 2024
The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Heterotopic ossification (HO) is a pathological process that generates ectopic bone in soft tissues. Hedgehog signaling (Hh signaling) is a signaling pathway that plays an important role in embryonic development and involves three ligands: sonic hedgehog (Shh), Indian hedgehog (Ihh) and desert hedgehog (Dhh). Hh signaling also has an important role in skeletal development.
View Article and Find Full Text PDFJ Bone Miner Res
October 2024
Clinical Genetics, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!