A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation. | LitMetric

Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation.

J Mol Model

CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China.

Published: August 2016

Regulation of the mechanical properties of proteins plays an important role in many biological processes, and sheds light on the design of biomaterials comprised of protein. At present, strategies to regulate protein mechanical stability focus mainly on direct modulation of the force-bearing region of the protein. Interestingly, the mechanical stability of GB1 can be significantly enhanced by the binding of Fc fragments of human IgG antibody, where the binding site is distant from the force-bearing region of the protein. The mechanism of this long-range allosteric control of protein mechanics is still elusive. In this work, the impact of ligand binding on the mechanical stability of GB1 was investigated using steered molecular dynamics simulation, and a mechanism underlying the enhanced protein mechanical stability is proposed. We found that the external force causes deformation of both force-bearing region and ligand binding site. In other words, there is a long-range coupling between these two regions. The binding of ligand restricts the distortion of the binding site and reduces the deformation of the force-bearing region through a long-range allosteric communication, which thus improves the overall mechanical stability of the protein. The simulation results are very consistent with previous experimental observations. Our studies thus provide atomic-level insights into the mechanical unfolding process of GB1, and explain the impact of ligand binding on the mechanical properties of the protein through long-range allosteric regulation, which should facilitate effective modulation of protein mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-016-3052-7DOI Listing

Publication Analysis

Top Keywords

mechanical stability
24
ligand binding
16
force-bearing region
16
binding mechanical
12
mechanical properties
12
protein mechanical
12
binding site
12
long-range allosteric
12
mechanical
10
protein
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!