Capto MMC mixed-mode chromatography of murine and rabbit antibodies.

Protein Expr Purif

Alliance Protein Laboratories, 6042 Cornerstone Court West, San Diego, CA 92121, USA.

Published: November 2016

Murine antibodies have weak affinity for Protein-A. Here, we have tested binding of murine monoclonal antibody (mAb) to Protein-A or Protein-A/Protein-G mixture under salting-out conditions. The addition of ammonium sulfate to HEK conditioned medium (CM) expressing murine mAb resulted in complete binding, leading to its elution by low pH or neutral arginine solution. Alternatively, a mixed-mode chromatography using Capto MMC resin was developed as a capture step. Binding of murine mAb occurred at neutral pH. The bound mAb was eluted with a gradient from 0.3 M NaCl to 0.3 M arginine/0.3 M NaCl at pH 7.0. The Capto MMC-purified murine mAb was further purified by hydroxyl apatite chromatography. Similarly, rabbit mAb was processed with some modifications. Binding of rabbit mAb to Capto MMC required a lower pH. Elution of the bound rabbit mAb was achieved by a gradient to 0.3 M NaCl, pH 7.0.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2016.07.010DOI Listing

Publication Analysis

Top Keywords

capto mmc
12
murine mab
12
rabbit mab
12
mixed-mode chromatography
8
binding murine
8
mab
8
gradient 03 m
8
03 m nacl
8
murine
6
capto
4

Similar Publications

While high-throughput (HT) experimentation and mechanistic modeling have long been employed in chromatographic process development, it remains unclear how these techniques should be used in concert within development workflows. In this work, a process development workflow based on HT experiments and mechanistic modeling was constructed. The integration of HT and modeling approaches offers improved workflow efficiency and speed.

View Article and Find Full Text PDF

Modeling Chromatography Binding through Molecular Dynamics Simulations with Resin Fragments.

J Phys Chem B

June 2024

In Silico Discovery, Janssen Research & Development, LLC, a Johnson & Johnson company, Spring House, Pennsylvania 19002, United States.

Accurate atomistic modeling of the interactions of a chromatography resin with a solute can inform the selection of purification conditions for a product, an important problem in the biotech and pharmaceutical industries. We present a molecular dynamics simulation-based approach for the qualitative prediction of interaction sites (specificity) and retention times (affinity) of a protein for a given chromatography resin. We mimicked the resin with an unrestrained ligand composed of the resin headgroup coupled with successively larger fragments of the agarose backbone.

View Article and Find Full Text PDF

Extracellular vesicle (EV) isolation from conditioned cell culture medium has been a challenging topic. It is particularly difficult to obtain pure and intact EVs at a large scale. The commonly used methods such as differential centrifugation, ultracentrifugation, size exclusion chromatography, polyethylene glycol (PEG) precipitation, filtration, and affinity-based purification each have their advantages and limitations.

View Article and Find Full Text PDF

Multimodal chromatography resins are becoming a key tool in the purification of biomolecules. The main objective of this research was the establishment of an iterative framework for the rapid development of new multimodal resins to provide novel selectivity for the future purification challenges. A large chemically diverse virtual library of 100 multimodal Capto™ MMC ligand analogues was created, and a broad array of chemical descriptors were calculated for each ligand in silico.

View Article and Find Full Text PDF

In this work, we have examined an array of isotherm formalisms and characterized them based on their relative complexities and predictive abilities with multimodal chromatography. The set of isotherm models studied were all based on the stoichiometric displacement framework, with considerations for electrostatic interactions, hydrophobic interactions, and thermodynamic activities. Isotherm parameters for each model were first determined through twenty repeated fits to a set of mAb - Capto MMC batch isotherm data spanning a range of loading, ionic strength, and pH as well as a set of mAb - Capto Adhere batch data at constant pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!