Mesiotemporal lobe Epilepsy (MTLE), the most frequent form of focal epilepsy, is often drug-resistant. Enriching the epileptic focus with GABA-releasing engineered cells has been proposed as a strategy to prevent seizures. However, ex vivo data from animal models and MTLE patients suggest that, due to changes in chloride homeostasis, GABA receptor activation is depolarizing and partly responsible for focal interictal discharges and seizure initiation. To understand how these two contradictory aspects of GABAergic neurotransmission coexist in MTLE, we used an established mouse model of MTLE presenting hippocampal sclerosis and recurrent hippocampal paroxysmal discharges (HPDs) 30-40days after a unilateral injection of kainate in the dorsal hippocampus. We first showed that injections of GABA receptor agonists either systemically or directly into hippocampus suppressed HPDs. Western-blotting and immunostaining revealed that levels of α1, α3 and γ2 GABA receptor subunits were increased in epileptic mice, compared to saline controls, while levels of R1 and R2 GABA receptor subunits but also NR1, NR2A and NR2B NMDA receptor subunits and GluR1 and GluR2 AMPA receptor subunits were decreased. In addition, we showed that the expression of the transporter NKCC1, which load neurons with chloride, was increased, whereas KCC2, a chloride extruder, was decreased and that HPDs were suppressed by injection of blockers of NKCC1. These different changes were integrated in a numerical model, and in silico simulations supported the notion that chloride imbalance impair local inhibitory control of pyramidal neurons' activity in this model of MTLE. However, our numerical model also suggested that lasting activation of these receptors restore physiological intracellular chloride concentrations and suppress HPDs. Overall, our study suggests that activation of GABA receptor remains an effective antiepileptic strategy to suppress focal seizures in MTLE, and demonstrates that modeling and simulation studies provide new insights about the cellular and synaptic mechanisms of this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2016.07.009 | DOI Listing |
NPJ Sci Food
January 2025
Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea.
Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anatomy, Dokkyo Medical University School of Medicine, 880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun 321-0293, Tochigi, Japan.
Recent findings have revealed that melanocortin 1 receptor (MC1R) deficiency leads to Parkinson's disease-like dopaminergic neurodegeneration in the substantia nigra (SN). However, its precise distribution and expressing-cell type in the SN remain unclear. Therefore, in this study, we analyzed the localization and characteristics of MC1R in the SN using histological methods, including in situ hybridization and immunohistochemistry.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA.
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!