Molecular electronics has received significant attention in the last decades. To hone performance of devices, eliminating structural defects in molecular components inside devices is usually needed. We herein demonstrate this problem can be turned into a strength for modulating the performance of devices. We show the systematic dilution of a monolayer of an organic rectifier (2,2'-bipyridine-terminated n-undecanethiolate) with electronically inactive diluents (n-alkanethiolates of different lengths), gives remarkable gradients of rectification. Rectification is finely tunable in a range of approximately two orders of magnitude, retaining its polarity. Trends of rectification against the length of the diluent indicate the gradient of rectification is extremely sensitive to the molecular structure of the diluent. Further studies reveal that noncovalent intermolecular interactions within monolayers likely leads to gradients of structural defect and rectification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201604748 | DOI Listing |
Nanotechnology
January 2025
Department of Electrical and Computer Engineering, Nazarbayev University, Nazarbayev University, Astana, Kazakhstan, Astana, 010000, KAZAKHSTAN.
Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Electrical and Computer Engineering, Nazarbayev University, Nazarbayev University, Astana, Kazakhstan, Astana, 010000, KAZAKHSTAN.
Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.
View Article and Find Full Text PDFNat Commun
January 2025
Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.
View Article and Find Full Text PDFSci Rep
December 2024
Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO, 80305, USA.
The warm Western Boundary Currents (WBCs) and their zonal extensions are persistent, deep, strong and narrow oceanic currents. They are known to anchor and energize the Extra-Tropical storm tracks by frontal thermal air-sea interactions. However, even in the latest generation of climate models, WBCs are characterized by large biases, and both the present storm-track activity and its recent intensification are poorly estimated.
View Article and Find Full Text PDFCancer Res
January 2025
Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
The batch effect is a nonbiological variation that arises from technical differences across different batches of data during the data generation process for acquisition-related reasons, such as collection of images at different sites or using different scanners. This phenomenon can affect the robustness and generalizability of computational pathology- or radiology-based cancer diagnostic models, especially in multicenter studies. To address this issue, we developed an open-source platform, Batch Effect Explorer (BEEx), that is designed to qualitatively and quantitatively determine whether batch effects exist among medical image datasets from different sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!