GLP principles and their role in supporting pharmacokinetic and residue depletion studies for drug registration and licensing.

Drug Test Anal

Laboratory of Pharmacology and Toxicology, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Published: May 2016

Good Laboratory Practice (GLP) is a quality system concerned with the organizational process and the conditions under which non-clinical health and environmental safety studies are planned, performed, monitored, recorded, archived, and reported. This paper focuses on the GLP principles applicable for veterinary drug registration and licensing purposes. First, a general overview of the GLP requirements is given, followed by a more specific comparison and discussion of the analytical method validation parameters and acceptance criteria of different international guidelines applied in the context of veterinary drug pharmacokinetic and residue depletion studies. Finally, some needs with respect to method validation and new developments in pharmacokinetic and residue depletion studies are highlighted. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dta.2009DOI Listing

Publication Analysis

Top Keywords

pharmacokinetic residue
12
residue depletion
12
depletion studies
12
glp principles
8
drug registration
8
registration licensing
8
veterinary drug
8
method validation
8
glp
4
principles role
4

Similar Publications

Development of a PET Probe Targeting Bromodomain and Extra-Terminal Proteins for In Vitro and In Vivo Visualization.

Pharmaceuticals (Basel)

December 2024

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.

Bromodomain and extra-terminal (BET) proteins are critical regulators of gene transcription, as they recognize acetylated lysine residues. The BD1 bromodomain of BRD4, a member of the BET family, has emerged as a promising therapeutic target for various diseases. This study aimed to develop and evaluate a novel C-11 labeled PET radiotracer, [C]YL10, for imaging the BD1 bromodomain of BRD4 in vivo.

View Article and Find Full Text PDF

Identification of a dual JAK3/TEC family kinase inhibitor for atopic dermatitis therapy.

Biochem Pharmacol

January 2025

Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China. Electronic address:

Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by recurrent eczematous lesions and severe itching, for which clinical treatments are limited. Selectively inhibiting Janus Kinase 3 (JAK3) and tyrosine kinase expressed in hepatocellular carcinoma (TEC) family kinases is proposed as a promising strategy to treat AD with possible reduced side effects and enhanced efficacy. In this study, we developed a dual JAK3/TEC family kinase inhibitor ZZB, which demonstrated potent inhibitory activity with IC values of 0.

View Article and Find Full Text PDF

Homozygous MTAP deletion occurs in ~15% of cancers, making them vulnerable to decreases in the concentration of S-adenosylmethionine (SAM). AG-270/S095033 is an oral, potent, reversible inhibitor of methionine adenosyltransferase 2 A (MAT2A), the enzyme primarily responsible for the synthesis of SAM. We report results from the first-in-human, phase 1 trial of AG-270/S095033 as monotherapy in patients with advanced malignancies (ClinicalTrials.

View Article and Find Full Text PDF

Deciphering Saquinavir-Bovine Serum Albumin Interactions: Spectroscopic and Computational Insights.

J Mol Recognit

January 2025

Biopolymer Modeling and Protein Chemistry Laboratory, Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai, India.

Bovine serum albumin (BSA) plays a crucial role as a carrier protein in plasma, binding various ligands, including drugs. Understanding the interaction between BSA and saquinavir, an antiretroviral drug, is essential for predicting its pharmacokinetics and pharmacodynamics. We employed spectroscopic approaches, including circular dichroism spectrometry and fluorescence spectroscopy, to investigate the binding of saquinavir to BSA.

View Article and Find Full Text PDF

A new series of benzo[h]quinoline-containing heterocycles was synthesized via reactions of benzo[h]quinolinyl-2(3H)-furanone with some nitrogen bidentate nucleophiles, leading to the formation of pyridazinone, pyrrolinone, benzimidazole, and benzoxazinone derivatives. The synthesized compounds were evaluated for their insecticidal activity against Culex pipiens L. larvae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!