Overload of Ca entry and excessive oxidative stress in neurons are the two main causes of depression. Activation of transient receptor potential (TRP) vanilloid type 1 (TRPV1) and TRP melastatin 2 (TRPM2) during oxidative stress has been linked to neuronal survival. Duloxetine (DULOX) in neurons reduced the effects of Ca entry and reactive oxygen species (ROS) through glutamate receptors, and this reduction of effects may also occur through TRPM2 and TRPV1 channels. In order to better characterize the actions of DULOX in peripheral pain and hippocampal oxidative injury through modulation of TRPM2 and TRPV1, we tested the effects of DULOX on apoptosis and oxidative stress in the hippocampal and dorsal root ganglion (DRG) neurons of rats. Freshly isolated hippocampal and DRG neurons were incubated for 24 h with DULOX. In whole-cell patch-clamp and intracellular-free calcium ([Ca]) concentration (Fura-2) experiments, cumene hydroperoxide and ADP-ribose-induced TRPM2 currents in the neurons were inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and capsaicin-induced TRPV1 currents were inhibited by capsazepine (CPZ) incubations. TRPM2 and TRPV1 channel current densities, [Ca] concentration, apoptosis, caspase 3, caspase 9, mitochondrial depolarization, and intracellular ROS production values in the neurons were lower in the DULOX group than in controls. In addition, the above values were further decreased by DULOX + CPZ and DULOX + ACA treatments. In conclusion, TRPM2 and TRPV1 channels are involved in Ca entry-induced neuronal death and modulation of the activity of these channels by DULOX treatment may account for their neuroprotective activity against apoptosis, excessive ROS production, and Ca entry.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-016-9992-1DOI Listing

Publication Analysis

Top Keywords

trpm2 trpv1
20
oxidative stress
16
trpv1 channels
12
modulation trpm2
8
dorsal root
8
root ganglion
8
drg neurons
8
[ca] concentration
8
ros production
8
trpm2
7

Similar Publications

Thermosensation and TRP Channels.

Adv Exp Med Biol

September 2024

Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.

Somatosensory neurons can sense external temperature by converting sensation of temperature information to neural activity via afferent input to the central nervous system. Various populations of somatosensory neurons have specialized gene expression, including expression of thermosensitive transient receptor potential (TRP) ion channels. Thermosensitive TRP channels are responsible for thermal transduction at the peripheral ends of somatosensory neurons and can sense a wide range of temperatures.

View Article and Find Full Text PDF

The Pigmentation of Blue Light Is Mediated by Both Melanogenesis Activation and Autophagy Inhibition through OPN3-TRPV1.

J Invest Dermatol

September 2024

Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea. Electronic address:

Blue light, a high-energy radiation in the visible light spectrum, was recently reported to induce skin pigmentation. In this study, we investigated the involvement of TRPV1-mediated signaling along with OPN3 in blue light-induced melanogenesis as well as its signaling pathway. Operating downstream target of OPN3 in blue light-induced melanogenesis, blue light activated TRPV1 and upregulated its expression, resulting in calcium influx.

View Article and Find Full Text PDF

Background And Purpose: Pulpitis is associated with tooth hypersensitivity and results in pulpal damage. Thermosensitive transient receptor potential (TRP) ion channels expressed in the dental pulp may be key transducers of inflammation and nociception. We aimed at investigating the expression and role of thermo-TRPs in primary human dental pulp cells (hDPCs) in normal and inflammatory conditions.

View Article and Find Full Text PDF

Purpose: Pterygium is a hyaline degenerative disease of the conjunctiva characterized by the progression of fibrovascular connective tissue from the bulbar conjunctiva to the cornea. The mechanism of pterygium formation is still not fully understood. Transient receptor potential (TRP) channels are a group of ion channels with distinct characteristics.

View Article and Find Full Text PDF

The role of transient receptor potential (TRP) channels in phagocytosis: A comprehensive review.

Eur J Pharmacol

February 2024

Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

When host cells are exposed to foreign particles, dead cells, or cell hazards, a sophisticated process called phagocytosis begins. During this process, macrophages, dendritic cells, and neutrophils engulf the target by expanding their membranes. Phagocytosis of apoptotic cells is called efferocytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!