Pore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main experimental techniques for pore space characterisation, including direct imaging, mercury intrusion porosimetry and gas adsorption, are firstly summarised. A review of the main pore network construction techniques is then presented. Particular focus is given on how such constructions are adapted to the data from experimentally characterised pore systems. Current applications of pore network models are considered, with special emphasis on the effects of adsorption, dissolution and precipitation, as well as biomass growth, on transport coefficients. Pore network models are found to be a valuable tool for understanding and predicting meso-scale phenomena, linking single pore processes, where other techniques are more accurate, and the homogenised continuum porous media, used by engineering community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconhyd.2016.07.002 | DOI Listing |
Polymers (Basel)
January 2025
Research Laboratory for Sustainable Development and Health, Department of Applied Physics, Faculty of Sciences and Technics, Cadi Ayyad University, Marrakesh 40000, Morocco.
Considering the growing need for developing ecological materials, this study investigates the acoustic, mechanical, and thermal properties of wood composites reinforced with beech or oak wood fibres. Scanning electron microscopy (SEM) revealed a complex network of interconnected pores within the composite materials, with varying pore sizes contributing to the material's overall properties. Acoustic characterization was conducted using a two-microphone impedance tube.
View Article and Find Full Text PDFSci Rep
January 2025
School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
This study employed some machine learning (ML) techniques with Python programming to forecast the adsorption capacity of MOF adsorbents for thiophenic compounds namely benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Five ML models were developed with the help of a dataset containing 676 rows to correlate the adsorbent features, adsorption conditions, and adsorbate characteristics to the MOF sample's sulfur adsorption capability. Among the ML approaches, MLP model achieved the best performance with a low mean squared error (MSE) of 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address:
In this experiment, the effects of different concentrations of cassava starch (CS) on the gel behavior of faba bean protein (FBP) were studied, focusing on the structural characteristics, gel characteristics and physical and chemical characteristics of the gel system. Specifically, with the increase of CS concentration from 4 % to 12 %, the morphology of the sample changed from fluid to gel solid. From the molecular structure, different concentrations of CS affected the secondary and tertiary structures of FBP protein, which made aromatic amino acids move to the surface of protein and promoted the transformation from α-helix to β-sheet.
View Article and Find Full Text PDFAcc Chem Res
January 2025
School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Textile Science & Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China. Electronic address:
Atmospheric pressure drying (APD) method holds great promise in the large-scale production of aerogels without specialized equipment and critical conditions. However, atmospheric-dried cellulose- based aerogels are challenged by the collapse of the pore walls induced by the capillary force that arises during solvent evaporation. This study prepared an atmospheric dried cellulose nanofiber (CNF) aerogel with a low shrinkage rate (17.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!