The performance of redox-enhanced electrochemical capacitors (redox ECs) is substantially improved when oxidized catholyte (bromide) and reduced anolyte (viologen) are retained within the porous electrodes through reversible counterion-induced solid complexation. Investigation of the mechanism illustrates design principles and identifies pentyl viologen/bromide (PV/Br) as a new high-performance electrolyte. The symmetric PV/Br redox EC produces a specific energy of 48.5 W·h/kgdry at 0.5 A/gdry (0.44 kW/kgdry) with 99.7% Coulombic efficiency, maintains stability over 10 000 cycles, and functions identically when operated with reversed polarity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b05038DOI Listing

Publication Analysis

Top Keywords

electrochemical capacitors
8
reversible counterion-induced
8
counterion-induced solid
8
solid complexation
8
efficient charge
4
charge storage
4
storage dual-redox
4
dual-redox electrochemical
4
capacitors reversible
4
complexation performance
4

Similar Publications

NH-Modulated Cathodic Interfacial Spatial Charge Redistribution for High-Performance Dual-Ion Capacitors.

Nanomicro Lett

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.

Compared with Zn, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn/NH co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CFSO)-NHCFSO electrolyte, high-reactive Zn and small-hydrate-sized NH(HO) induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement.

View Article and Find Full Text PDF

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

Understanding the Effects of Edge Planes in Porous Carbon: Quantum Capacitance and Electrolyte Behavior in Supercapacitor.

Chemphyschem

January 2025

Chinese Academy of Sciences, Institute of Coal Chemistry, 27 South Taoyuan Road, Taiyuan, Shanxi, P.R.China, 030001, Taiyuan, CHINA.

Electric double layer capacitors (EDLC) require large specific surface area to provide high power density. The generation of pores increases the electrochemical capacitance with more graphitic edge planes exposed to the electrolyte. Conventional theory believes this increasing in capacitance is owed to the increased specific surface area, but our work uncovers another mechanism.

View Article and Find Full Text PDF

A safe and robust in-situ polymerized cementitious electrolyte coupled with NiCoS@CuCoS electrode for superior load-bearing integrated electrochemical capacitor.

J Colloid Interface Sci

January 2025

Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804 PR China. Electronic address:

Load bearing/energy storage integrated devices (LEIDs) featuring cementitious electrolytes have become ideal for large-scale energy storage. Nevertheless, the progression of LEIDs is still in its nascent phase and considerable endeavors concerning cementitious electrolytes and electrode materials are necessary to further boost the charge storage ability. Here, we propose a facile synchronous reaction method for preparing sodium acrylate (SA)-based in-situ polymerized cementitious electrolyte.

View Article and Find Full Text PDF

Transition Metal-Mediated Preparation of Nitrogen-Doped Porous Carbon for Advanced Zinc-Ion Hybrid Capacitors.

Nanomaterials (Basel)

January 2025

Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!