The interaction of amphiphilic and triphilic block copolymers with lipid monolayers has been studied. Amphiphilic triblock copolymer PGMA20-PPO34-PGMA20 (GP) is composed of a hydrophobic poly(propylene oxide) (PPO) middle block that is flanked by two hydrophilic poly(glycerol monomethacrylate) (PGMA) side blocks. The attachment of a perfluoro-n-nonyl residue (F9) to either end of GP yields a triphilic polymer with the sequence F9-PGMA20-PPO34-PGMA20-F9 (F-GP). The F9 chains are fluorophilic, i.e., they have a tendency to demix in hydrophilic as well as in lipophilic environments. We investigated (i) the adsorption of both polymers to differently composed lipid monolayers and (ii) the compression behavior of mixed polymer/lipid monolayers. The lipid monolayers are composed of phospholipids with PC or PE headgroups and acyl chains of different length and saturation. Both polymers interact with lipid monolayers by inserting their hydrophobic moieties (PPO, F9). The interaction is markedly enhanced in the presence of F9 chains, which act as membrane anchors. GP inserts into lipid monolayers up to a surface pressure of 30 mN/m, whereas F-GP inserts into monolayers at up to 45 mN/m, suggesting that F-GP also inserts into lipid bilayer membranes. The adsorption of both polymers to lipid monolayers with short acyl chains is favored. Upon compression, a two-step squeeze-out of F-GP occurs, with PPO blocks being released into the aqueous subphase at 28 mN/m and the F9 chains being squeezed out at 48 mN/m. GP is squeezed out in one step at 28 mN/m because of the lack of F9 anchor groups. The liquid expanded (LE) to liquid condensed (LC) phase transition of DPPC and DMPE is maintained in the presence of the polymers, indicating that the polymers can be accommodated in LE- and LC-phase monolayers. These results show how fluorinated moieties can be included in the rational design of membrane-binding polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b01574DOI Listing

Publication Analysis

Top Keywords

lipid monolayers
28
monolayers
10
interaction amphiphilic
8
block copolymers
8
lipid
8
copolymers lipid
8
adsorption polymers
8
acyl chains
8
inserts lipid
8
f-gp inserts
8

Similar Publications

Background & Aims: GD2, a member of the ganglioside (GS) family (sialic acid-containing glycosphingolipids), is a potential biomarker of cancer stem cells (CSC) in several tumours. However, the possible role of GD2 and its biosynthetic enzyme, GD3 synthase (GD3S), in intrahepatic cholangiocarcinoma (iCCA) has not been explored.

Methods: The stem-like subset of two iCCA cell lines was enriched by sphere culture (SPH) and compared to monolayer parental cells (MON).

View Article and Find Full Text PDF

[Absorption mechanism of iron oxide nanoparticles in Caco-2 cell model].

Wei Sheng Yan Jiu

November 2024

West China School of Public Health, Sichuan University, Chengdu 610041, China.

Objective: To explore the possible mechanism of absorption of iron oxide nanoparticles into the human body through the gastrointestinal tract.

Methods: This article used Caco-2 monolayer cells as a cell model, prepared characterized iron oxide nanoparticles(Fe_2O_3 NPs) as suspensions, and intervened in Caco-2 cells. CCK-8 method, transwell method, and atomic spectrophotometer method were used to explore the effect of Fe_2O_3 NPs on the activity of Caco-2 cells and the absorption and transport of them through the Caco-2 monolayer cell model.

View Article and Find Full Text PDF

Inflammation is a critical driver of the early stages of diabetic retinopathy (DR) and offers an opportunity for therapeutic intervention before irreversible damage and vision loss associated with later stages of DR ensue. Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown mixed efficacy in slowing early DR progression, notably including severe adverse side effects likely due to their nonselective inhibition of all downstream signaling intermediates. In this study, we investigated the role of prostanoids, the downstream signaling lipids whose production is inhibited by NSAIDs, in promoting inflammation relevant to early-stage DR in two human retinal cell types: Müller glia and retinal microvascular endothelial cells.

View Article and Find Full Text PDF

An oral liraglutide nanomicelle formulation conferring reduced insulin-resistance and long-term hypoglycemic and lipid metabolic benefits.

J Control Release

December 2024

Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea. Electronic address:

Type 2 diabetes is a chronic disease characterized by insulin resistance and often worsened by obesity. Effective management involves the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) to assist with glycemic control and weight management. However, these drugs must be administered subcutaneously due to their low oral bioavailability.

View Article and Find Full Text PDF

Differential insertion of arginine in saturated and unsaturated lipid vesicles.

Biochim Biophys Acta Biomembr

December 2024

Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), RN 9 - Km 1125, 4206 Santiago del Estero, Argentina. Electronic address:

Article Synopsis
  • This study investigates how L-Arginine (L-Arg) affects lipid membranes using various techniques like fluorescence spectroscopy and dynamic light scattering.
  • L-Arg reduces the polarizability of saturated lipids, leading to an increase in vesicle size, while in unsaturated lipids, it increases polarizability without significantly changing size.
  • The interaction of L-Arg differs based on whether the lipids are saturated or unsaturated, and cholesterol appears to dampen these effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!