This study emphasizes the development of a novel surface modified liposome as an anticancer drug nanocarrier. Quaternized N,O-oleoyl chitosan (QCS) was synthesized and incorporated into liposome vesicles, generating QCS-liposomes (Lip-QCS). The Lip-QCS liposomes were spherical in shape (average size diameter 171.5±0.8nm), with a narrow size distribution (PDI 0.1±0.0) and zeta potential of 11.7±0.7mV. In vitro mucoadhesive tests indicated that Lip-QCS possesses a mucoadhesive property. Moreover, the presence of QCS was able to induce the cationic charge on the surface of liposome. Cellular internalization of Lip-QCS was monitored over time, with the results revealing that the cell entry level of Lip-QCS was elevated at 24h. Following this, Lip-QCS were then employed to load cisplatin, a common platinum-containing anti-cancer drug, with a loading efficiency of 27.45±0.78% being obtained. The therapeutic potency of the loaded Lip-QCS was investigated using a 3D spheroid cervical cancer model (SiHa) which highlighted their cytotoxicity and apoptosis effect, and suitability as a controllable system for sustained drug release. This approach has the potential to assist in development of an effective drug delivery system against cervical cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2016.06.071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!