11. Bactericidal Activity of Photocatalytic TiO2 Excited by Low Intensity Pulsed Ultrasound (LIPUS): An In Vitro Study.

J Orthop Trauma

*Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; and †Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences.

Published: August 2016

Photocatalysis with anatase-type titanium dioxide (TiO2) under ultraviolet has a well-recognized bactericidal effect. The purpose of the present study was to evaluate the photocatalytic bactericidal effects of TiO2 on Staphylococcus epidermidis (ATCC35984) caused by Low Intensity Pulsed Ultrasound (LIPUS) associated with bio-implant-related infections. The photocatalytic properties of the TiO2 films were confirmed by the degradation of an aqueous solution of methylene blue. The disks were seeded with cultured Staphylococcus epidermidis and irradiated by LIPUS. The bactericidal effect of the TiO2 films was evaluated by counting the surviving colonies. The viability of the bacteria on the photocatalytic TiO2 film coated titanium was suppressed significantly to 63% after 2 hours of LIPUS treatment (P < 0.05). The photocatalytic bactericidal effect of TiO2 under LIPUS is useful for sterilizing the contaminated and infected surfaces of metal bio-implants.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.bot.0000489984.25082.82DOI Listing

Publication Analysis

Top Keywords

photocatalytic tio2
8
low intensity
8
intensity pulsed
8
pulsed ultrasound
8
ultrasound lipus
8
photocatalytic bactericidal
8
staphylococcus epidermidis
8
tio2 films
8
bactericidal tio2
8
tio2
7

Similar Publications

Phthalocyanine-sensitized TiO significantly enhances photocatalytic performance, but the method of phthalocyanine immobilization also plays a crucial role in its performance. In order to investigate the effect of the binding strategy of phthalocyanine and TiO on photocatalytic performance, a dual-pathway study has been conducted. On the one hand, zinc-tetra (-carbonylacrylic) aminephthalocyanine (Pc) was directly grafted onto the surface of FeO@SiO@TiO (FST).

View Article and Find Full Text PDF

Mimicking Axon Growth and Pruning by Photocatalytic Growth and Chemical Dissolution of Gold on Titanium Dioxide Patterns.

Molecules

December 2024

Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.

Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.

View Article and Find Full Text PDF

Poly(Acrylic Acid)/TiO Nanocomposite Hydrogels for Paper Artwork Cleaning and Protection.

Molecules

December 2024

Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy.

Paper-based artworks are prone to natural aging processes driven by chemical and biological processes. Numerous treatments have been developed to mitigate deterioration and prevent irreversible damage. In this study, we investigated the use of poly(acrylic acid)/TiO composite hydrogels, combining their cleaning and protective functions in a minimally invasive treatment.

View Article and Find Full Text PDF

UV and Visible Light-Induced Photocatalytic Efficiency of Polyaniline/Titanium Dioxide Heterostructures.

Molecules

December 2024

Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.

The concept of using polyaniline/titanium dioxide heterostructures as efficient photocatalysts is based on the synergistic effect of conducting polymer and metal oxide semiconductors. Due to inconclusive literature reports, the effect of different polyaniline/TiO ratios on photocatalytic activity under UV and visible light was investigated. In most papers, non-recommended dyes are used as model compounds to evaluate visible light activity.

View Article and Find Full Text PDF

Photocatalytic selective oxidation of glycerol to formic acid and formaldehyde over surface cobalt-doped titanium dioxide.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:

Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!