Objective: Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling.
Methods And Results: Slug expression was decreased during both cell-to-cell contact and TGFβ1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFβ1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries.
Conclusions: Slug emerges as a key transcription factor driving SMC towards a proliferative phenotype. The increased Slug expression observed in vivo in highly remodeled arteries of mice and human suggests a role of Slug in the pathogenesis of pulmonary vascular diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956159 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159460 | PLOS |
Sci Rep
January 2025
Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, No.12, Health Road, Shijiazhuang City, 050011, Hebei Province, China.
This article focusing on examining the function and further, molecular function of SHP2 in ovarian cancer (OC). For the molecular mechanism, bioinformatics was applied to study the specifically expressed genes in ovarian cancer ; the western blotting was applied to identify the EGF, p-SHP2, ZEB1, and E-Cadherin expressions in ovarian cancer tissue and pair adjacent tissue; then SKOV3 cells were treated with EGF and infected with E-Cadherin overexpression lentivirus, and then cells were treated with benzyl butyl phthalate and IRS-1 respectively. Detection of expression of p-SHP2, ZEB1, E-Cadherin, α3-integrin, p-Src, p-SMAD2, Snail, Slug and SKOV3 cells of migration and invasion abilities were detected using Western blot method and cell scratch assay and Transwell assay; Progression of ovarian cancer was detected using subcutaneous tumor transplantation assay in nude mice and HE staining method and immunocyto.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
The underlying mechanisms between cancer stem cells (CSC) and epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC) remain unclear. In this study, we identified TGIF2 as a target gene of CSC using sncRNA and machine learning. TGIF2 is closely related to the expression of SOX2, EGFR, and E-cadherin, indicating poor prognosis.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.
Toxins (Basel)
November 2024
Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico.
Toxins from snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India. Electronic address:
The intricate regulatory mechanisms governing TGF-β1 expression play pivotal roles in tumor progression. Key proteins such as FKBP1A, SMAD6, and SMAD7 trigger this process, modulating cell growth inhibition via p15INK4b and p21CIP1 induction. Despite TGF-β's tumor-suppressive functions, cancer cells adeptly evade its effects, fueling disease advancement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!