Polyethylene nanocomposites with silica, alumino-silicate and thermally reduced graphene were generated by adding pro-oxidant additive. Additive resulted in early degradation of pure polymer, however, the degradation was delayed in the presence of fillers. Graphene resulted in maximum extent of enhancement of peak degradation temperature (13-14 °C depending on the additive content) followed by silicate and silica. Additive also resulted in enhancement of polymer crystallinity, which was further aided by the filler, though no change in peak melting and crystallization temperatures was observed. The graphene and silicate particles were also observed to be uniformly dispersed in polymer matrix, whereas some aggregates were present in silica based composites. In graphene composite with 2.5 wt% additive content, the tensile modulus was increased by 1.95 times that of pure polymer. Increasing the additive content was also observed to enhance the mechanical performance. For instance, graphene nanocomposite with 1 % additive content had 40 % and 33 % increment in storage modulus at 50 °C and 70 °C respectively as compared to pure PE. The thick plaques of composites exhibited oxo-degradation in the presence of pro-oxidant with silica and silicate composites with 2.5 wt% additive having 100 % degree of embrittlement in 15-16 months at 30 °C. Graphene composites also exhibited ∼50 % embrittlement for the same conditions. The filler particles were observed to delay the time needed to attain embrittlement due to reduction in oxygen permeation in the matrix as well as UV absorption, however, these materials confirmed that degradation of the materials could be successfully tuned without sacrificing the mechanical, thermal and rheological properties of the nanocomposites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945736 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2015.e00050 | DOI Listing |
Crit Care
January 2025
Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
Background: Both quantitative and qualitative aspects of muscle status significantly impact clinical outcomes in critically ill patients. Comprehensive monitoring of baseline muscle status and its changes is crucial for risk stratification and management optimization. However, repeatable and accessible indicators are lacking.
View Article and Find Full Text PDFBMC Nurs
January 2025
Department of Health Sciences, Faculty of Medicine, Lund University, Lund, Sweden.
Background: Telehealth services are becoming increasingly popular at primary healthcare centres. Some examples include text-based digital triage and health guidance using chats, emails, images and pre-filled forms. Telephone-based communication has until recent years been the predominant means for triage and health guidance, but now includes written communication via computer or smartphone.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Agronomy, Horticulture, and Plant Science, South Dakota State University (SDSU), Brookings, SD, 57007, USA.
Background: Hexaploid oat (Avena sativa L.) is a commercially important cereal crop due to its soluble dietary fiber β-glucan, a hemicellulose known to prevent cardio-vascular diseases. To maximize health benefits associated with the consumption of oat-based food products, breeding efforts have aimed at increasing the β-glucan content in oat groats.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.
Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).
Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!