Unlabelled: The latent infection of Epstein-Barr virus (EBV) is associated with 1% of human cancer incidence. Poly(ADP-ribosyl)ation (PARylation) is a posttranslational modification catalyzed by poly(ADP-ribose) polymerases (PARPs) that mediate EBV replication during latency. In this study, we detail the mechanisms that drive cellular PARylation during latent EBV infection and the effects of PARylation on host gene expression and cellular function. EBV-infected B cells had higher PAR levels than EBV-negative B cells. Moreover, cellular PAR levels were up to 2-fold greater in type III than type I latently infected EBV B cells. We identified a positive association between expression of the EBV genome-encoded latency membrane protein 1 (LMP1) and PAR levels that was dependent upon PARP1. PARP1 regulates gene expression by numerous mechanisms, including modifying chromatin structure and altering the function of chromatin-modifying enzymes. Since LMP1 is essential in establishing EBV latency and promoting tumorigenesis, we explored the model that disruption in cellular PARylation, driven by LMP1 expression, subsequently promotes epigenetic alterations to elicit changes in host gene expression. PARP1 inhibition resulted in the accumulation of the repressive histone mark H3K27me3 at a subset of LMP1-regulated genes. Inhibition of PARP1, or abrogation of PARP1 expression, also suppressed the expression of LMP1-activated genes and LMP1-mediated cellular transformation, demonstrating an essential role for PARP1 activity in LMP1-induced gene expression and cellular transformation associated with LMP1. In summary, we identified a novel mechanism by which LMP1 drives expression of host tumor-promoting genes by blocking generation of the inhibitory histone modification H3K27me3 through PARP1 activation.
Importance: EBV is causally linked to several malignancies and is responsible for 1% of cancer incidence worldwide. The EBV-encoded protein LMP1 is essential for promoting viral tumorigenesis by aberrant activation of several well-known intracellular signaling pathways. We have identified and defined an additional novel molecular mechanism by which LMP1 regulates the expression of tumor-promoting host genes. We found that LMP1 activates the cellular protein PARP1, leading to a decrease in a repressive histone modification, accompanied by induction in expression of multiple cancer-related genes. PARP1 inhibition or depletion led to a decrease in LMP1-induced cellular transformation. Therefore, targeting PARP1 activity may be an effective treatment for EBV-associated malignancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021435 | PMC |
http://dx.doi.org/10.1128/JVI.01180-16 | DOI Listing |
DNA Repair (Amst)
January 2025
Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil.
Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, British Columbia V7V 1N6, Canada.
The St. Lawrence Estuary (SLE) beluga () population in Canada is Endangered, and endocrine disrupting contaminants, such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and other halogenated flame retardants, have been identified as a threat to the recovery of this population. Here, potential impacts of these contaminants on SLE beluga were evaluated by comparing skin transcriptome profiles and biological pathways between this population and a population less exposed to contaminants (Eastern Beaufort Sea) used as a reference.
View Article and Find Full Text PDFShock
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University; 151 Rd, Yan Jiang West, Guangzhou, 510120, China.
The global prevalence of heart failure is still growing, which imposes a heavy economic burden. The role of microRNA-146b (miR-146b) in HF remain largely unknown. This study aims to explore the role and mechanism of miR-146b in HF.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.
The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated 4 (NEDD4) is involved in various cancer signaling pathways, including PTEN/AKT. However, its role in promoting gastric cancer (GC) progression is unclear. This study was conducted to elucidate the role of NEDD4 in GC progression.
View Article and Find Full Text PDFWiad Lek
January 2025
DEPARTMENT OF PHARMACOLOGY AND TOXICOLOGY, FACULTY OF PHARMACY, UNIVERSITY OF KUFA, KUFA, IRAQ.
Objective: Aim: Testing Cordia myxa extract on colon cancer cell line and caspase-3 gene and COX-2 protein expression.
Patients And Methods: Materials and Methods: This study used Cordia myxa ethanolic extract at various dosages on SW480 cells. Cell proliferation was measured using MTT, also examined effect of Cordia myxa extract on caspase-3 gene expression using quantitative real-time polymerase chain reaction.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!